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SHORT flNTRDUCTION TO CYNr-'I

Both in China and abroad, in thermal physics and engineering circles, the trend

in the design of new tyres of combustion chambers is to combine the use of aerodynamics,

;he science of heat transfer and heat tr=nsfering materials and the theory of the

science of combustion with ex-erimental testing carried out by using the technology

available for precise, high speed, automatic measurements; the theoretical knowledge

v:ilable and the jata which can be obtained are then cmbined to improve the quality

of mhusical and mathematical models of the flow fields in questimn; programs for the

calculations are Pxanged, and co nniters are used to figure out flow field character-

istics and, at the same time, collaborate the test results.

This book analyses the air flow structures and flow field charcteristics of the

combustion chambers of jet engines from the point of view of aerodynamics; it -"..--

duces basic conceots and basic eauations, and it -lncen mrhaois on theory and expez-

imentation d-scribing vortex flow fields and turbulen-e ;ets; this is to for a

prevaratory foundation for the nunerical calculation of combustion chamber flow fielas.

There are sixteen charters all together in this bock, and it could be useful "

studied by senior students or reseo-rch personnel specializing in thermal physics eng-

ineering and dynamics at -major technical acadmies and schoolsl it can also be usr-

fuli.Y studied by scientific and technical personnel in fields related to combustion.
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CEAPTER I I2TTRODUCTION

Section 1 Capability Targets for Combustion Chambers of Turbine Jet rigines

Combustion chambers are the "ovens" of turbine jet engines, called "turbine

jets" for short. With air flow, fuel injection and ignition, one gets combustion

which throws out heat energy and increases air flow. High pressure, high temper-

ature nses flow through the turbine wheels, and the expansion of these gases

inside the jet tubes creates power. If there is no air flow, there is no com-

bustion, and the "turbine jet" cannot maintain its functioning cycle. If com-

bustion is bad, then, the capabilities of turbine jets cpnnot be good.

Aircraft fly in different climates, at different altitudes and different

sreeds. The technological requirements for the combustion chambers of turbine

jets must be particularly strict. It is requir~d that, ,rithin the "f..l+ht envel-

one", n.ngines not be extinguished, that combustion be fast, stable, even and good.

7-Thcrd this, it is also required that there be few combustion chamber failures,

that chamb-r life is long and that the chambers are small in volume and light in

weight. The quality of combustion produced by various combustion chambe C

called "capability targets."

A fihter aircraft flies above an isothermic layer, and, because it has

develoned a flame out malfunction, the compressor turbines turn in vain. In

such a circumstance, the combustion chamber intake pressure can drop to p, <.

0.3 (:1cm-); temre-ature can drop to t2  -30°(C); and, flow speed can rise

as high P.s u-1" 100 (m/s). The only thing to do is to divP to a lover altitude

or temnorarily change over to gasoline; moreover, one must inject oxygen, and,

only then, can the engi-ne be reignited. The altitude at which an 'xtincL-ished

rne cn be reinited is called "ignition altitude"; it is -nerlly e'e'n

SCr ard m .0 , Inition altitudes are safe altitudes.

-3y using the volume of flow Q (m3/s) to eliminate the combustion chamber

volume V (m3), one can obtain the air flow "stop over period" t= 6-4 (me). In

this period of time, the air intake volume G must be apportioned to various areas,

the jet fuel must be atomized, vaporizedq, mixed, heat must be released by chemical

reacticn, the air mixture must be rebu3med, the temperature must be lowered, etc;

and all these processes must take place in a timely manner because, only then, can

continuous, stable combustion be sustained.
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Combustion is the violent collision of nolecules of oxygen with molecules of

fuel in such a way as to destroy the structure of the fuel molecules and form

molecules of a new compound. Under conditions of high temperature and pressure,

molecules have many opportmnities to collide and many opportunities to refom;

the chemical reaction time t < I (ma). As far as speed of combustion is concerned,

it is primarily decided by the speeds of air flow distribution and mixing, Aero-

dynamic nozzles and vapor tubes cause liquid fuel to atomize ahead of schedule,

which causes vapor and shortens the mixing preparation time within the combustion

c--mber. One ctn say, ",yen -Jixing mepns fast burning." Within a combustion

chamber, how many kilocalories of heat energy can be produced by each square meter

of volume, for each hour, for each atmosphere of pressure is called "heat emission

stngth" or I. The I value for turbine jet combustion chambers is (2-- 5)x 07

(kcal/m 3. hr •aim)j the same value for a normal boiler is 5x 10 (kcal/m 'hr. atm);

3o the combustion chamber is about 100 times hotter. Given a fixed value of It

it is possible to estir-. h volume of the combustion chamber involved.

According to the quantitative eqiilibrium equations 'for the chemiicl reactions,

everyv kg of kerosene will burn its precisely required nuntity of air L,96 IA.7.

The actual ratio between air flow quantity G and L is called the gas rcmra lder

coefficient d. When a turbine jet is cruising at *hi~n altitudes, the amount of

air entering te thamb-r G can be right around 12C k-,es the amount of fuel being

injected Gf; under maximum conditions it will be arovnd 50 times Gf. That is to

say that 'the whole vsriaticn r=ange for the gns remainder coefficient a is ;ide,

i.e. 3.5 4a .8. In actuality, when local values of *> 2, it is very difficult

to ignite the fuel. Therefore, no matter what kind of operational configuration

a turbine jet is in, it is necessary to ,r'ke pains to maintin the locPl value of

the gas remainder coefficient in the main combustion area of the combustion cham-

ber within the range 0.5 ;<4 1 in order to prevent flame out. The ave-r.ge in-

take air flw speed for combustion chambers can be in the range of a3Zf 3.-lI00

(m/9). Stability of combustion is evidenced by such things as tolerance of a ride

range of lean and rich mixtures, low temperature, low pressure, high air speed,
while still maintaining flame stability and vigor without deviation or flame out.

As far as the use of high capability ignition gear for the forcing of igni-

tion is cnoenmed, when such equipment is used to start aircraft in cold weather,

it in particularly important to be sure t t the throttle is not pushed too fast

increasing speed too violently. Because of the fact that when rotation speed is

low, kerosene atomization, vaporizing and mixing are not yet completely prepared
for, it is not nossible to achieve stable combustion in the main combustion area.
However, if forced ignition is not stopped, the fire can flow down and reach the
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exhaust Dort of the conbustion chamber or even the turbine wheels before it really

starts to barn; this condition raises the temnerature but does not increase the

rotation speed of the turbine; this can lead to the destruction of the turbine

fan blades by the heat. This is called a "heat stoppage" mnLIfunction.

There are three import-ont indicators of good combustion:

(i) Overall combuttion efficienc= a d Local Combustion Efficiency 71.

TMke H= the fuel heat value, 3=1 /aL= the fuel to air ratiol let the total

heat content of the gases when they are at the exhaust Dort of the combustion

chamber and have already bp' buned = i ; and, let the total heat content of
.3

air at the intake port = i 2 . If one takes each kilogram of air as the basis,

then

overall combustion efficiency 1, =0 + 14, - io%

'e already know '; we me-sure the averag? overall tennerature of the intake

and exhaust g- s flow Tz and T7; and, t- ,-.n figure . y checking a gas heat eng-

i-nering -=onerties chart or by 2et ting i 3 -nd i X t the nresent time, # > 99%
for the main combustion chambers of turbine jets. This is a numerical value for

this characteristic, which is obtained through static engine testing. In flight

*ill be lower.

In the interior of the combustion chamber, measurements of local fuel con-
centrations in different parts of the chamber = Cf (kg/m3 ). Te initial fuel

concentration before combustion is taken to equal Cf (kg/m7)1 and, the fuel cn-

sumption ratio 0 - Cf/Cf . Before combustion, 4P =0 1; after combustion, it

equals 0.
Local combustion efficiency i = (1-4 , ) %; the local -rates of chemical

reaction

W A.-4c. -C, Al.~ [kg/in'- s].
I;'. d1

Local rates of combstidi qj follow the course of the flow and gradually

rises until it reaches the overall combustion efficiency , 9"unevenness"
(2) 8, the A level of the exhaust port temperature field of com-

bustion chabers.

&A 247k.:71- --



Because the flow speed distribution inside combustion chambers is uneven, and

the distribution of fuel concentration is uneven, therefore, there is no way for

the exhaust port temperature distribution to be even. In order to assure the

strength level of the turbine fan blades, strict limits must be placed on the

"uneveness" of radial and circumferential temperature distributions in the air flow

coming out the exhaust port:

Define F ihest overall exhaust port t emo-AvT overall _exhaust temn

Avg overall exhaust port temp-Avg overall intake temp

= TT- Ti'

If one can raise the average, overall exhaust nort temperature for combustion

chamb-rs, T' and r educe the "uneveness", 8:; then, it is certain that one can raise

the capabilities of turbine jets. If T can be raised so that Ti'g; 200OK, then,

low temnerature miing is not required and neither is assisted combustion.

(3) 'Jall temperature distributions of flame tubes.

The material in the hin ranels of flame tubes have a limited ability to res-

ist high temezratures. If the temperature distribution on a wall surface is not

even, and the surfaces are subjected to aerodynamic and mechanical vibrations,

-ansing stress concentrations along the edges of openings in the panels, it is

very easy to have fatigue, creasing damaege, cracking and complete failure. Pieces

of failed material can then flow with the air current down into the engine where

they can damage the turbine fan blades, and this cn !ead to a whole range of ac-

cidents! At present, localized hot spots in the walls of flame tubes should not

exceed 85 0 C, and the average temperature througbout the walls is ,i. 60°C. Mn

order to prevent overheating of the flame tubes, first, combusticn must be stable,

that is, the flames must not exnmnd, wobble or cnsume the inside of the tabes.

Secondly, air film cooling or "sweat cooling" must be used to protect the inside

walls. The air films which stick to the inside walls of the tubes very seldom

take part In the combustion, and are not a main force in the operation of the eng-

ine; therefore, every effort must be made to reduce the amount of air film cooling;

the amort of air used for this purpose should not exceed 25%.

The lack of carbon accumulation in jet tubes and around jet mouths, the lack

of exhaust moke, minimal quantities of the poisonous gases CO and NO in exhaust,

' ".4: : [ "; -' " " i 'i .. .. .. . .. ..



a iunimal amount of combustion noise - all these things are also are Indicators of
"good burning." The Peoples laws concerning these matters set strict limits on

eyxhaust smoke, CO and 1T0 content of exhaust and noise.

If one is to achieve fast combustion, stable combustion and good combustion,
then, the construction of combustion ohambers -- -,eaking from an aerodynamic noint

of view - poses many obstacles and limitations. For e:ample, compressors,

swirl atomizers, stabilizers, evamorizaticn tubes or jet nozzles, as well as -ur-

rent .irection baffles, shuiting' _enel miang aiv -tures d narrow .--a(ks an all

be considered as obstacles; forcing air currents to reduce s-eed, to suddenly in-

tensify, to turn, to rotate, to divide, to blast and to mix can all be considered

as limitations. These "obstacles" and "limiations" cause air flow speed (i ztribu-

tion to be extremely uneven; this zroduces turbulence and vortices. The viscos-

i-y 1heir forces between layers of air and the friction between the air flow and
'he solid sufaces of the engine will both tend to reduce the total pressure.&P *

"The total pressure P represents the bize of the total amount of mechanical energy
in the air flow; that is to say, the amount of work that the expansion

of the air flow is capable of doing. There is an overall pressure l6ss of 1% in
front of the tail jet nozzle, and the thrust of the turbine jet is reducid by some-

thing more than 1%. Drops in air flow pressure which occur to a result of energy

expended in order to overcome blockages are called "flow blockage losses." Even
if one has a '!az, smo-th, straight tube with no surface friction and no vortical
turbulance, it only takes an increase in the heat of combustion, and such an incr-
ease will necess_-cily increase the speed of the air flow and decrease the nressure.
This phenomenon is called "heat blockse loss." It can be clearly seen from all
this that the basic contradiction in the desigi of combustion chambers is that in

o-der to i--ove combustion cnabilities one rust introduce many flow blockages

i-ud heat blockages. The general ')ressure z-rtio between the exhaust nozzle and the

intake nozzle of a combustion chamber is called the "general pressure repletion
coefficient" a. For combustion chambers of the same form and dimensions, it is
obvious that the higher a. is the better. In general, W should be > 0.94.

A "therml expansion strength", rwhich ha a hig value is a reflection of
a combustion chamber which has a smnll volume. The design of a turbine Jet must

make rational use of limited space. The process of develomment goes from single

or simple tubes to interconnected tubes and, finally, to the tubular combustion
cavities themselves. Recently, the trend has been toward the use of shortened
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cavities, double cavities and sub-divided cavities in the construction of combustion

chambers.

Shortening the length of combustion chambers not only reduces the volume of

the chamber and lighteu its weight, it is also capable of reducing the amount of

air recuired for air film cooling, which allows the absolute maximum amount of the

air entering the chamber to take part in mixing and combustion; shortening the span

between the turbine wheels and the compressors increases rigidity along the main

axis as well as critical rotation speed.

his method for shortening the length of combustion chambers invclves --,ort-

ening the chamber entry compressor or the use of a "sudden compression form" .3as

entry; these types of chamber entries take advantage of vortex reflux and shorten

flame length; they also increase the maximum -permissible temnerature in front of

the turbines, T., and incr-ease combustion efficiency 7 ; therefore, it is os -ible

to shorten or eliminate areas of suplementary fuel feed and lowered temperature;

with such a design it is possible to adjust combustion to different ore.rti-nal

configurations and eliminate exhaust 5as assages.

Because their heat emission strength is high, their operating conditicns iiv-

erse and their technical requirements stringent, the'general overhaul life of't.r-

bine Jet 6ombustion chambers is much shorter than that of naval ship boilers or

surface ovens. The general overhaul life for the combustion dhambers of fighter

dircraftgsnoroximately 200-500 hours. The general overhaul life of the combustion

chambers of civilian aircraft can exceed 1000 hours. All the technical require-

ments for a combustion chamber cannot be satisfied at the same time. For example,

fast buzning and long life, good combustion and small losses are contradictory

requirements. Cne must set the main capability targets for a combustion chamber

according to its intended application.

2. Flow Distribution in Combustion Chambers of Turbine Jet Engines

Fig 1.1 is a cross section diagram of the cavity of a cannecting-tube type corn-

bustion chamber. The compressors send air flow G (kg/s) through the cavity's pres.

sure intensification apparatus where it slows down and is pressured into the com-

bustion chamber entrance with an average flow speed of ;2 (m/s), a density of *pi-2
(kg/ia-), an average overall pressur=e of P2 (/c and an average overall temper-

ature of T (K). Distributions for the entering air flow G in certain predetermined

configuzaticns are as follows:

-, - 'i " n| "n i F,,, . , " i L---- --"---"
Nrm. 5. .



(1) The -mount of gas flowing from the eddy current gear into the main com-

bustion area, G1, accounts for aproximately 8-1 C11. the exhaust at the end of the

eddy current apparatus is fitted with flow guide baffles which have numerous holes

in them; this is to prevent the accumulation of carbon. The blades of the eddy

current devices force the air flow to rotate; this creates the vortical reflux area

(see Chapter 6 for a detailed treatment of this subject).

(?) The !as volume, G, which flows into the main combustion area from the

-as mixture arertures and the main fuel apertures accounts for aproximately

7-. hese two cocrtituents of the ias volume (0.- G,) and the amo'.nt of jet

fuel which is mrdxed in m aporonriate prorortions together form a lccal gas -emain-

der coefficient a-1. 1.C. A rich mixture in the main combustion area with a< 1.0,

is advatageous for starting combustion and for the stability of high altitude corn-

usticn; however, the local combustion efficiency 1 is too lcw, and a relatively

long surrlementsry combustion area is rea.-ired. A lean mixture in -he main com-

huztion area -,ith xL 1 has advantages *.,hich are The e::ct onrosite of those of

a rich nixture.

7-e -77z -olme distributin and P" and Y* of the gases mtering the flame tube

of' he ccnnected tube combustion chamber in Fig 1.1 c.ange along the course of the

flow.

( ) e as volume, 0,, ,:.,ich comes from the supplementary fuel aper-

tur'es and enters and enters the sur'lementa;r combustion area accounts for apmrrox-

inately 20-25',. if the main combustion area has a ricn iix-ure to bein with,

theoretically, the mutual interacticn and mi::ing of (:+ G02+ 3) and rf should

cause the local -as remainder coefficient at the exit of the sugrlemer~ary com-

bustion area to reach s Z 2 with local combustion efficiancy re-achinz - ,.,A

(4) The -as volume, G,, which is entpring the cooling area from the large

cooling aperture added to the 37s volume used in ai= film coo irr, G, -cc t

for aL-roxiLwately 45-3. If one can raise the over=%. t'sn-erature, T., which

* is nermissible for entrance into the turbines from 1200 K to 1600 K, then, it

is possible to reduce the amount of gas necessary for cooling, G4. If one can

shorten the combustion chamber, lessening the amount of wall surface necessary

in cooling, then, it is possible to reduce the amoimt of gas used in the air film,

Gr. Not only can this raise the thermal emission strength, I, it can also greatly

lower fuel consumption, sfe, (the number of kg of fuel cansumed per hour for each

kg of thrust).

In Fig 1.1 one can see that, in the area in front of the main fuel

7
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aperture, that is, in the main combustion area, the drop in overall pressure and the
rise in overall temperature are both very fast. This explains why both the mixing

and combustion of air and fuel are very violent.
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"soeed field", "pressure strength field", "concentration field" and "temperature

field." Through the use of high srpod cameras or pulse laser integrated

information photogra-phy, it is possible to photog-aph a certain cross section of

the " fir low structure" in a limited space. If several cross sections are photo-

graphed, it becomes possible to analyse the "flow field structure" of the slacee

Fuel mist vaporization, sneed of diffusion mixing and concentration of diffu-

sion and mixing are all 1et.rnined by local flow sne-ds. herefore, the "Speed

field " 1ete.-.ines the "ccn .-. :nield," 7olecular oollisions and the speed

and *aount..z. x:ezrna. e"a.-si . :7: 2.re all .t..ir.d '7 lcci. temn-

eratures, pressures and fuel cmncevT-.ticns. T'h. reforep 7he "concentration field"
detezrines the "tempprature fie"4." looking at it from this point of viewt the

sneed field of the main combustion ar a determines the temper-ature field of the

exhaust oft of flame tubes. :f the exhaust port tonp-ature distribution does

not measure up to standards, then, it is necessary to inn-ove the "flow field

structure" of the main combustion area. If holes or secc-ndaxy seaxns open later

in the middle section of flame tubes, It has no greLt effect.

Air flow is movement by a "collectiTe of molecules" or a "micro-mass of 5ns."

Flow speed is the speed of the center of mass of the "micro-mass of 'as" also called

the "material point rarticle." Even if the collective flow speed, V=O, if one

could bore into the microcosm of the "micro-mass of gas, one -aould see large ruz-

bers of gas molecules each haphazardly ricocheting and colliding with each other

at differacnt speedsp U, and from different directions. If one looks at the -un-

sh-ine which peneta--tes into a dark room through a crack in a window, one can see

smoke and dust rolling and bouncing back and forth in the colxr of light; splash

a few drons of perfume here and there, and one can smell it throughout a 'rhole

room; both these observations are nmnifestations of "molecular motion." Under

conditions of standiri tem-ce-rature and pressure, ev-ry 22.4 liters of gas contain
23N°= 6.023x10 molecules. Say the volume of the 'micro-mass of pis" is 1 cmt it

still contains N g.2.71O1 9 molecules. According to the theory of molecular motion,

temperature, T, expresses the level of intensity of the linear motion of molecules,

or it reDresents the statistical average of the kinetic energies of the molecules

(I/21--; it has nothing to do with the volume of the "micro-mass of gas." Prqs-

sure is an expression of the size of the strength of the molecular collisins

which occur on each umit of surface area of the inner wall of the "micro-mass of

gas; it is related to the molecular number and t~e number of collisions, when
a givem number or molecules absorbs thermal energy, its movement is violent, its

9

1 i.. ' ?-q 7 I ;I 1 ,i,,
-, u ii I . . .. . ".u ,--



average kinetic energy is large; its temperature is high; the space between one

molecule and another is widened; the volume occupied by the micro-mass of gas is

increased, or, one could say, its density is diminished. Therefore, if the number

of molecular collisions recieved by each surface area unit of the inner wall of

the micro-mass of gas is reduced, then, the pressure will be diminished.

:What has been said above can explain why the air flow through a clean, unob-

structed tube must be speeded up as soon as heat is added to the system and the

volume of the micro-mass of -as exrands if the air flow is to maintain the same

soewd it has through an inobstrart.?d tube. A irol- in- reszure in the air flow

produces a "temperature blockage."

It can also explain why it is difficult to start ignition and conbustion under

conditions of low temperature and pressure. Because cxen j molecules and molecules

of fuel are few in number, their motion is slow, -nd their collisins !re not vio-

lent enough, onportunities for their combining are few.

r recoznize the fact that "flcw fields" arte fo-rd by ccntinucus micro-maLser

of gas without _ps of spaces. -von the smallest micro-maoes of gas are much

.r-r than the dimensions of a :zn1re mclecule. The'eforc, they are called

continuous media or macrocosms and are not considered in terms of molecular moticn.

The- influence of the circumferential pressure which is recieved by the micro-

masses of gas can cause deformations. 'dhen the density,palso changes in line ':ith

these deformations, it is called the "compressibity" of the gas. All gases a=re com-

"ressible. However, when the air flow hch number is M. 0.20 or the low speed

V < 60 (m/s), compres~ibilit-y is not noticable, and one can treat gases under these

conditions as non-compressible fluids, that is, with density, ,ap-oximately equal

to a constant.

Imagine that there is a fLced, rectangular coordinate system superimposed over

the flow field. The coordinates for the material -o*--t -article, i, of a certaLn

micro-mass of gas are (x,y,z); the com-cn-nts of s-eed a:ctor, i, along x, y and

z are u, V and w. Using x, y and z as well as time, 1 , as inderendent variables,

it is possible to write functional equations for the flow strtictuze by using stand-

ard values for the variables p, T and p of the micro-mass of gas along with the

components of the vector quantity, V. The equations are as follows:

110
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If one uses experimentation or theoretical methods to provide precise values

for the functional equations above, one has a grasp of "flow fields." If the con-

dition parameters, p, T and pw as well as the flow speed vector components u, vp

and w do not vary with changes in time, r.:, then:

are all equal to zero, and this is called a "steady flow field." Only when one has

appropriate values for flight altitude, H, flight Mach number, M, rotation speed, s.

air intake, G, and jet fuel quantity, G9 so that they are stable and unchanging,

without fluctuations, and there is stable combustion, can one consider there to be

a stable flow field within and outside the flame tubes.

hen condition parameters and flow speed vary with chnmges in one coordinate,

'bi is called a single-element stable flow field; when ccnditicn parameters and

flow sveed vary with changes in two coordinates, this is called a two-element stable

flow field; and, when condition -ar-neters and flow speed vary with changes in

three cocrdinates, this is called a three-element stable flow field.

3unnose there were no viscosity shear forces between micrc-masses of as

thn, lurng movements of the micro-masses of gas there would only be deformtion

displacement; there would be no rotatinal movement; this is called "non-rot-

;tional iisplacement, that is, it depends only on the "pressure gradient" to pro-

duce flow speed. If one takes the material particle points for the micro-Msses

of gas in a stable flow field and connects them together to form a line, this line

is called the "flow line." The svecial characteristics of "flow lines" are as

follows: the speed vector, V, of material particle points correspond everywhere

to the flow lines; two flow l--nes cnnot cross each other; there is no cross

;.' flow speed, therefore, micro-mas!es of g':s cmnnot cut across flow lines; the dif-

fusion and exchange of momentum, mass and energy between flow line and flow line

must depend on molecular motion; the rarity or density of the intervals between

flow lines represents the amount of flow passing through each unit cross section

perpendicular to the lines of flow, that is to say, the size of the *density of

flow", pV
In a two-element stable flow field produced in a wind tunnel, it is possible to

observe a smoke-nmaked flow line curling around an obstacle. Except for the "tail

flow" area, the shape of the flow line and the interval between it and other flow
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lines remain almost stable and muchnnging.

In a flow field *ithout a rotational value, draw a set of closed lines. From

the various points an these lines, extend several boundary flow lines to form a

b6imdary wall called a "flow tube." Obviously, the gases flowing inside and outside

the flow tube cannot penetrate its sides. This principle is constantly utilized

in the desigiing of the gas flow pssages of turbine jets, that is to say, the

"boundary flow lines" of the sides of the flow tube are taken to represent the

shape of the inside walls of the massages involved. For example, the pressure in-

tensificati'n snrar-.tus, etC., cn the "n+1.e of -*re cmbustion clambers of turbine

jet engines on test firing beds.

In reality, there are viscosity shear forces between micro-masses of gas.

'During the movement of micro-masses of gas, there nr# not only efozmation displac-

ements, but also rotations and pulzaticns. "3 7 ir"-!" are nothing but the violent

rotatian of micro-masses of gas, also called "vortical masses." Two times the

Pngular vqlocity of rotaticn of the "vorti-ai maszes", 2LOO is called "curl."

Flow fields in *hich large and small vorticnl -nasses roll over and ovcr each other

.rd .!:3P.te are called "fbu'lnc. fci >'- . -_ -ur.noe -ow : Ids:, are

linstable flo 4  -1d3, therefore, tis , r-- - t- -- ,' t re~'ir flow lines.

-cwevart f.o.lswing the o---:20 of "molecular moticn theoi-"

if one does not follow the progress of in lividual "vcrtical naszes", but on2.y

observes the "averaze time" par-Lmeter for la e numoers of "vortical masses" as

they flow rest specific points in a turbulence flow field, it becomes possible to

obtain wihat is called an "average time rarzneter." The instantaneous paramet r =

the average time parameter + the pulsation carameter. SymolicaAly sea.cing, if

one adds a horizontal line to represent an av-rage time value and a comma shape

in the upper right to denote a plsation value, then, it is possible to write:

T~- + T' -+

.+" W + W'

In the laboratory, it is poslible to explore flow fields using regular instru-.

meit pickups like pitot tubes, thermo-couples, etc. ; because the pick-ups have

large inertian, the measurements from them are only of average pressures, I, during

a given time, of average temperatures, T, Auring a given time, and of average flow
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speed, V0 , during a given time; for pulsation parameters, it is possible to use

pick-ups with small inertias in order to measure the "pulsation wave shape".

Speaking in terms of these average time rorameters, "turbulence flow fields" can

also have average time stable states and average time flow lines.

The special characteristics of the tumbling and pulsating of vortical masses

in turbulence flow fields are as follows: the diffusion and exchange of mass, mom-

entum and energy between vortical masses is particularly fast-from ten times to

several hundred times faster than the exchange and diffusion accounted for by ",nol-

ecular motion." Mne use of eddy current apparatus and stabilizing apparatus in

combustion chambers is nothing but an attempt to utilize the particularly high

speeds of mirxing and diffusion which exist in turbulence flow fields in order to

shorten combustion time and shorten flame length.

Sec 4 Jet Porms in Combustion Chambers of Turbine Jet T'ngines

It does not matter what type of structure a combustion chamber has; its air

flow distribution and flow field structure must be able to satisfy the following

conditions: mixing of fuel and air must be even; ignition must be fast; com-

bustion must be stable; flames must be short; and the combustion chamber must put

out exhaust g-ses within a certain limited range of evenly high temperatures. To

meet these conditions one must utilize the differential between the inside and out-

side static pressures of flame tubes or the impulse pressure of intake gases as

they flow through the eddy current apparatus, large apertures, small apertures,

cracks, ducts, jet nozzles, etc and enter into the jet flow in order to control

the flow field structure. A jet is a current which passes through a jet nozzle

from one space into another space. This second space is filled with either sta-

tionary or moving gases. This current may have the same composition and temper-

ture as the gases around it, or it may be composed of different elements at a

different temperature; however, an all surfaces at which the boundaries of the jet

contact the surrounding enviromment, the static pressures are the same. Depending

on the form of the jet nozzle and the current, jets in combustion chambers can be

divided as followa:

- Flat mouth, two-element jets, as in long, narrow intermixings of gases

- Round aperture, three-element jets, as found in the cooling apertures

of the main combustion area

-Ring mouth spiral jets, aw found in the eddy current apparatus
13



- Narrow crack, half-jets that hug wall surfaces, as found in coolingFas films
- Vapor cones shot out by the small apertures of straight fuel spray
nozzles

- Hollow vaoor cones shot out by the ring nozzles of centrifugal jets
- Fuel and air, dual-state rotational jets shot out by pneumatic jet

nozzles

- TDal-st .te .- ts nut out by vaporization tubes, which, then, collide
with -;heirl 7!ates to form radial jets and vortices.

',hen cracks form in the walls of the tubes formed along the flow linest fan-
shaned jets are s-ewd out across the nain direction of flow and are washed away
by the main flow to forn a curtain of -as; the r-flux are!: behind this ,-As curtain
i7 able to stabili:e flames and is called an aerodrnamic stabilizer.

All the various t-,es of flame stabilizers used in afterbuniers re blunt
obstacles and form reflux areas in their wakes. These wakes and jet fields have
analogous locations.

21gi 1.2

1. Combustion Chamber with Double-cavity Flame T'Ebe and Parallel Flow Difusicn Flume
2. Fuel Feed Passageway f 3. Disturbed Flow lattice Smooths Out and Rectifies Air
Flow 4. Outer Skin 5. Pressure Intensificatin Apparatus 6. Jet Plume 7. Double-
Cavity Flame Tube

Two jets can flow parallel to each other; they can flow across each other in a
perpendicular way; they can simply intersect each other, or, they can directly col-
lide. In areas in which neighboring jets come into contact with each other, there
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are sudden changes in flow speed; this produces shear layers ( mixing layers).

Figure 1.2 shows a combustion chamber with parallel flow jets within a dou-

ble cavity flame tube with a turbulence flow diffusion plume, Along the oircum-

ference of the fuel feed _essageways there are two sets of numerous fuel jet noz-

zles which put out numerous vapor cones. The air intaket %, divides to become
three layers; the first layer is air for the main combustion area, G; the second

layer is the air for the supnlementaa- combustion area, t., and the third layer
is the air that goes to cooling, I.; in turn, this air is supplied to the double-

cavity flame tubes through small holes in the walls. The jets from the small

holes and the main current together form a cross current curved jet., The fuel

vapor evaporate' and is diffused into the surrounding cross currents; the sur-

rounding air disperses in the directions of the cross currents of the vapor cones;

upon ignition, these become blowtorch-like plumes with length = L. 'he flow

structure is simple; however, when the combustion chamber is relatively long,

it cecomes rather clumsy.

Figure 1.3 shows the flow field structure for the cavity of a flame tube with

a fuel dispersion plate. :%.e air intake, G, divides itself into three currents.

One current of air, G, follows the spiral flow lines from the time they adance

on the air plate and bore through the holes with the thiee-.fish-seale flaps'

into the forward portion of the flame tube cavity; these lines then mate up "..ith

the vortical flow which is induced by the fuel dispersion plate. A second current

of air, "2t passes through the hollow nozzle guide vane and, from there, enters

the four round holes at the end of the vas cone where it is blown into the forward

portion of the flame tube. The jets from these holes merge, push together and

expand the radius of the vortex, Rv . Mixed and cooled, the third current of air, G3t

enters the rear portion of the cavity by following the rectangular air mix cowling

which is arranged around the girth of the flame tube. 'ecause the vortex induces an

attrictive force, the jet, 1, which enters the cowling, is sub-divided agai into

two currents; one current is drawn forward into the vortex, and one current is

drawn backward almost to the root of the nozzle guide vane. The jets from the three

fish-scale holes in the forward gas plate flow smoothly, change directiun and merge

to become an intense spiral Jet, appropriate for use by the eddy current apparatus.

The jets from the four roumd apertures in the after gas plate merge to become jets

with a fixed direction; these jets mete up with vortices to form ignition sources

and to function as flame stabilizers. The cross currents that enter from the rectangular

cowling divide to form brach Jets; they pass through the flames and aid the functions

of mixing and cooling. The half jets that enter from the air film cooling cracks
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and stick to the walls protect the flame tube and the side walls of the after gas

cone. The aerodynamic structure of this type of combustion chamber is relatively

complex, and combustion in an undesigned state is difficult to stabilize; however,

with a compact design, the length to radius ratio of combustion chambers can be made

relatively small, and their weights can be made light.

One can study the flow fields of jets independently, from the Points of view of

'nozzle size, share and location.

.ec 3 ?est Pi-oductirn 'e-thor's for Combustion Chambe*rg of Turbine Jets

(i) Comnonent Testing Methods:

"Tith reference to the structure of various types of combustion chambers, we

3elaticn -!s_ -writh other. com;onents. Accordirg to t\e various nrin-

c-i-al dimensicns in the estimates of the unified, stable flow field required by

-ti~al ccnditions, we combLned Dur experiences and made decisions for the des-

ign of test production originals of comrone-nts. Iarge numbers of tests were run on

components Cn test stands and in h±i altitude chambers. We made improvements to

the design over and over again, and we tested over and over agai until the capab-

ilities of the combustion chamber measured up to the required standards, then, we

r-assembled the whole mechanism in order to make tests" to see that the components

mated together properly. In recent years, turbo-fans have already developed to the

toint where air flow quantities, G ; 4004 in the case of turbine jets, G 1 100

(kg/s); overall combustion chamber intake pressures, P2  30 atmospheres, and

temperatures, as: 900K. The use of components in original dimensions for making

+ests requires very large sources of air flow and pre-heatLng equinment as well as

instrumentation for detection, testing and recording as well as the processing of

data.

(2) Simulation Testing Methods:

In employing simulation testing methods, first, set out the set od~ifferential

equations which apply to the flow field of the combustion chamber in question. Ac-

cording to "equivalence theory", that is, the idea that, if the original form of a

flow field and its simulated form are geometrically equivalent, if the flow condi-

tions of the two are equivalent, and if both their motive forces and their heat
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st'tes ara equi-,-alent, then, -Dv-7r! -f lIvaleneN rn be lerived " -rcm

the diff'e=-ntial euasions. For mamrle, " -. r, Re = -.b/', ;he Iach

numbert M = '/a; the special Pr3ndtl number, -r = -c/l ; the spiral density

number Sc = 'fD. 9 etc. 7 = flow speeld; L = pas '."ge diameter; a = the speed

of soundl c = isostatic specific heat; A: - rate of thezml conductivity; - dyn-

amic viscosity; 'v'= kinetic viscosity, D = coefficient of diffusion. Whether one

makes a reduced scale model of the flow fields in question or cuts out a sector of

the original, on the test bed during experimentation, the simulations of the orig-

inal operatiomal configuaratica maintained the "principles of equivalence" through-

out. The scale of this type of test equipment is relatively small; the number of
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reetitions of experiments required is also somewhat riduced. It is also possible to
use these sirmlation techniques to study some striking phenomenon. For example:

-Flow simulation testing of gas mixture bubbles. It is possible to observe the
configuration of the turbulent flow on the inside and the outside of transparent

models in order to aid in the analysis of the geometrical configuration and air flow
listribution of combustion chambers so as to determine whether they are satisfac-

tory or not.

-The injection of helium gas into the vortical reflux area. Simulations with
vzor fliels diffuse the nixing ?rccess. 1,ihn one extracts a samole of the g-ases

Lwvolved and analyses them usLng a chromatagraph, it is possible to determine the

distribution of concentr-.tion.

h'.e " incinles of equivalence" of combustion flow fields can reach more than
ten in number. During testing it is not possible to simulate an perfect equivalent
of the orerational configuratid- and flow field structure of the original form.
Therefore, the results' cf imtLjiatian testing have limitations. For example: when

one extracts a flame tube from a cannular combustion chamber and conducts combustion
tests with it in a laboratory air channel, one discovers that the ignition rsnge,

the combustion efficiency, the overall pressure losses and the exhaust nozzle tamp-
erature field all fit expectations and satisfy requirements. D = the diameter of
the flame tube. Maintaining the principles of equivalence, the following must be t=Ue.

:Ahen this is compared with the capabilities as measured with the original combustion
chamber complete and on a test bed, one finds that the reality is not necessarily
satisfzctory. The stamdard, ralue of K is arrived at from the rate of che mical reac-
tion and the -as -ass stop-over period; it does not take into consideration the "flcw

,- ,field structures" of the intake, the interior and the external surroundings of the
flame tube. The flow field structures and turbulent flow configurations for the
interior and exterior of the flame tube are dissimilar as to the values obtained in
the laboratory air channel and those obttined when the complete chamber was on a
test bed; the air flow distributions were also dissimilar.

(3) Numerical Calculation Methods:

Physical modeling: The flow fields of combustion chambers are relatively cam-
lez. The reasons for this incluae the fact that gases are compressible, that they

18
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have viscosity, that flow fields have turbulence flow vortical bodies which diffuse

and exchange mass, momentum said energy, that they ha-,e chemical reactions which

change a variety of the constituents of the gasps involved, that they have different
sine fuel drololets which vamorize in the flow and change the local concetr- ticns;
the gases involved exchange heat by radiation and convection with the walls of the

flame tube; moreover, this is a three-element stable flow field. It is very dif-

ficult to scr-t )ut the equations for the rmuimly interacting influences of all
t'he 74hysicl -.i chemical processes SpinE, on. Therefore, it is necessary, on the
b-lsls of7 -I~ ;ftuCrin of the combustion chamberp its operational confIiGur-

ation, its initial1 conditions- and boundary conditiaos to divide up the flow field
and treat its various pieces differently. Axisym'Aric flow fields can be simnlified
into a t-eio-9leriet flow field on a m-ridian surf- ce. Usinp average time parneter99
it 4-a noscible to diet-rmine that it is a stable fl2ow field when averaged over time.

"hen one usps-i vaporization tubes or vapor fuels, it is possible to leave out of
ccns iiektim the ifluence of fuel droolet vapo izatimi. Ase'ining- that combusticn
is the mixing together of two types of gases, it is possible to reduce the number
of types of cases involved. Assuming a turbulent flow state model, It is possible
to initially determine the coefficient of diffusion for mass, momentum and energy.

'he objfect of physical modeling is to highlight important contradictions, to ex-
tract the regularities goveniing chanzges, and, finally, to analyse the flow field
structur-e of the combustion chamber in question.

~athematical mnodeling: Based on the independent variables chosen for phy-
sical modeling (coordinates x, y9 z ; time, r,) -and the dependent variables -A

"flow s-oeedp concmn.rsntion9 tenmerature, nressurev etc)I an well as on the prin- -

ciples of the conservation of mass, momentum and energyp if one uses the equations
of NIewtonian viscosity shear stressea, the equations of Pei Ke for the diffusion of
'ratte= 3nd the e"'tationn of F'n T4-ye for r-.t;es of thermal canductance, it is Dos-
3ible to work out the continuit-y enuaticns, certain avera ;ud time equations as
well as energy equatians and so on. T:hese equations constitute a spt of non-li 1n-

* ear, second degree, non-homogeneous partial differential equations. 21ccept under
special circumstances, this set of partial differential equations is very difficult
to figure out from a theoretical point of view.

Difference equations: The set of partial differential equations discussed

above represents a set of related equations in wihich dependent variablesq, 4,

follow, in some irner, independent changes which are introduced sepprately into

an independent variable. If one divides flow fields up into logical sections
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in the form of a fine grid pattern, then, this grid pattern will have on it many

"nodes." The values for the dependent variablesi O p as well as the derived first

and second degree functions of the stresses involved will be different. Using the

distnce between two nei&hboring nodes, which is called the "step length," ane

replaces dx, dy, dz and d' with Ax, Ay, A-z and 'lr in the set of equations;

dy, d,, dr; d O'dl, d x/dz likewise can be computed. In this way one one
changes the original set of differential eanations into a set of "limited dif-
ference" "a!gbraic equati-nas" which can also be called a set of "difference eoua-
tions.

Computer prog'i-&ming: -,ing commuter lang'sage, take the operational procedure

for stof differential equaticiis, and use it to write the nrogram; then,
7ut in the computer. If one has made the model of the flow field correctly and

w ritten the progr~a correc-ly, then, in ten seconds to several inutes, the com-

7uter :ill ive you a -'int-omt of the ',truc~ure of the flow field.

20
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W Chapter 2 Combustion Chamber Tntry Diffusers

Sec 1 Diffuser Performance Recuirements

As far as the subsonic portions of the entry passages of turbine jets are con-

c*rne, both the area in fr.o nt of the enti7 to the main combustion chamber and the

ar-a in front if the -ntrr to the after butner combus+icn chamber -ust have a dif-

..... ..... . n. .. cr.-e far ..e. kus . for the nain

combustion chamber is cancerned, the requirements are as follows:

(1) It must take the air flow speed coming out of the compressors, ioe.,

1 (/), .- 0, and reduce them ,zntil the valuee in front of the

:ntry to the :o-ibust-cn chariber are . = 30-60 (m/s), M-= 0.1-0.2; at the same

time, the diffuser must increase the static pressure of the air flow so that p2 p1 .

*.il- i nure t he rain -Thustion area allows for -- y iiticn and stable

o cnrust icn.

(~, .ne ov nrU .... sur recovery coefficient of the diffuser-s, i
at its m=-imum which is the sa-me as saHng that the overll -res ure loss,&P"

must be minimized.

(3) In order to prevent boundary layer separation on the inner walls, the

exhaust flow speed distribution must be made as uniform as possible in order to

aard against a shift toward a pulsating Eas flow which will interfezawith the

distribution of the amount of flow and the fPlw field structure in the flame tubes

uider diff erent tVyes of ore-ational ccntiurations..

Sec 2 Total Pressure Losses in Diffusers

.ere are two r-zsons for a loss of overll pressure 'urin- the process of

diffusion: boundary layer separation and surface friction. Tig 2.1 (a) is a

chart of the flow lines in a diffuser passage shaped like a conic section; Fig.

2.1 (b) shows local boundary layer separations which have given rise to spiral

turbulence. Because of the viscosity of the gas, the speed of the flow line s-x,

which sticks close to the surface of the wall, has the value, u = 0. The flow

speed of the flow line, n, along the wall gets larger the closer it comes to the

main flow until, whe it reaches the place where the thickness of the boundary

layer is 8, the flow speed has already approached the flow speed of the main
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flow, u = 0.990. Within the bomdary layer, the laminar spe-, u, along n are dis-

tributed according to fixed laws. There is a direct ratio ( Ou/an ) b-twe-n the

stress caused by the viscous friction between two layers of gas which are flowing at

liff erent -aRtes of speed, r . and thp -radint of the changes in flow qpeed which

exists between two such layers:

{N7~2](2.!)

Sis :e. "7-ac :'"os._  a--s. :'--e -nc i ni+. s ('. s/m); th

physical unit is (N. s/m). /P ) = , and this is called "kinetic viscosity";

the unit for this quantity is Gas/s). Ges are the exact op-osite of liquids in

the respect that increases in the viscosity of a mac follcw increases in the temr.

eature of the gas. For exmple, between ?0 1 and 100°C, the value of -a for

water drops from 1.03x10-4 to 0.28x1O(kg. s/m2); in the same temperiture range,

the value of i: for air actually increases from 1. xlC t 2.22C0 (0. s/r').

In the diffusion passage, gas can only flow by overcoming the pressure boost

gradient ( Op ). The mass of the micro-masses of gas must have suffici2nt

momentum, ,g, to overcome the viscous drag, -,i DI. ; only then can it

flow. D = the internal diameter of the tube; 1 = the length of the tube. In

the boundary layers, the closer one gets to the surface of the walls the lower
are the values for the flow speed, u. Inane, in Fig 2.1 (b), that, :hen the

*e, uig 2.1 ni ig21() t,-.,e h
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point a. It is not pe-misible that there should be a vacuum between the separated

flow and the surface of the wall. Because of this, the gas which flows down against

the current and fills in the vacuum creates a negative flow speed gradient along

flow line, a-, - t(au/a") 1. The coumter-current is erroded and overcome by the sep-

arated air current and turned so that it flows with the main current, creating a

vortical turbulence flow. This vortical air mass srirals at high speed consuming

energy. -ecause of this there is a loss in overall pressure:

p does not change, so

w - - (2.z)

41 is called the "coefficient of ex'nansicn" and is related to the angle of ex7ansicn

29. Concerning equal cross sections of a strai rht tube, where A1= A2 , there is no

expansion; 26 = 0; there is no reduction in speed or increase in pressure; there

is no separation; o- = 0, If 20 = 1800, suddenly there is expansion; suddenly

there is reduction in speed and separation; #o = 1, Fig 2,2 draws out the curve

described by the values of 'O', the coefficient of expansion, as they vary with

changes in the angle of expansion, 28:# these values reflect ccnditicns in a conic
section-type diffuser. ":hen :2, = 600, '4' can be 1.2. This is due to the fact that

ther- is separation of the boundary layers all along the walls of the diffusion

passage; moreover, this is accompanied by periodic pulsations; in this situation

th .i iver-.! -re :ur i; ztill large compared to losses from sudden diffusion. After

' ohe in.- if exrar.oic., 201, re-ches the noint where it is > 400, it is better not

to use a straight tube for sudden diffusion and the reduction of speed; however# tha-

* use of such a tube does lessen the losnan due to separation.

.. lien the air flow overcomes the frictiondrag of the inside walls of the diffuser,

f 9 there is an accompanying loss of overall pressure, , * The losses in

0 overall pressure from frictiondrag are defined by the following equation

- . 2 12
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't is called the "coefficient of fricticn drag;" it is a fimction of the degree of

roughiness of the wall surfaces and the Reynolds number of the intake as defined by

the equation below

Re -%_iP,.

2300oRe < 10', - 0.3164 Re' '  (2.4)

Re - 10' UJ,, 0.0032 + 0.221Re - '0z1 (2.5)

Zxperimentation proves that, w¢hen the inside walls are moeth, Re > 105t fa; 0.004

and there is almost no change.

1.2 - --

I ,

E2.2

Fig 2.2

1. Curve Defined by Changes in the "Coefficient of Bbkpansion"p, 't for a Conic 3ec-

timn-type Diffuser

There are two types of overall pressure losses that must be figuired together when

iI

dealing with diffusers; they are defined by the following equaticns:

Ap WOP), + (AP)f ISI(I 0 a). (2.6)
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Sec 3 Coefficient of Total Diffuser Pressure Losses

It is possible to use different values of the angle of exransion, :20iv in con-

ducting wind tunnel-type experiments. In such experiments, the area to be studied is
divided into Darts and roving measurements are taken of the total pressures at var-
ious roints on the cross sections of the intake and exhaust; on the basis of the dis-

tribution of the amount of flow Pud! A or momemtum pu'dA , it is possible to obtain

the "ei/hted avr..age total Pr....: .s .P and P, tlat is to say, it is ncssible

to determine a precise value for total pressure loss, A P = Pi - P2 ; therefore,

it is possible to precisely determine the total pressure recovery coefficient#: a.
Aerodynamic calculations habitually take the total ,ressure lors:.P:to be several

times the imnact head or kinetic nressure of the intake, q = I2. 2'. ; this is

(,ac! 1he coefficient . f totil pressure loss ( or, flow d-g coefficient) '

usLng the speed of sound, a2'- k/p , it is possible to write:

az q 1,001
2 2

_ (i-., (2.7)
k Mi PL

~it is possible to na.r.sure t" ratio between the static pressure and the total pres-
~~sure in the intake, =(,) u'd determine AI or H1 . 'We already Ianew : so we

-- , can simply substitute it into the calculation. Not even considering the diffuser,

2

all. - - (I -i (2-8)



it is possible, using the values we already know for M4 and 28: to consult Fig 2.3(a)

and obtain the coefficient of total n~essure loss,'l , for an incompressible gas flow.

If one is considering the cross section of a rectanular dif-+aser, use Fig 2.3 (c);
adjusted for the influence of compressibility, -

0.9 0 0.4 , ,3 0. s 7

0. r1

i I ! I

o0.'!" iII

0.3 2rr
I i.2 . .r -,

0. 1  .

0 iI2<o /i

ZO201/KL
-., 0.2 o.3 . 0.5 0.6 0.7u

,.c" ) r'0 '20>20* z/1 ,

1.0
.2 ,. 0.*3A4 0.5 0.6 0.7 t

(4 -41K,K- t o

Fig 2.3
1. ? o for a Conic Section-type Diffuser as it Varies 'Jith Changes in M and 2 e
2. Rectangular Diffuser 3. Conid Section-tyne Diffuser 4. Correction Factor

5. Suden Diffusion

In the case of a ring cavity diffuser, it is first necessary to make substitutions,
so that it can be treated as an equivalent conic section-type diffuser; only then
can one apply equation 2.2 or use Zig 2.3. If one has chosen a "turbine jet" des-
ign olan, one has already estimated the dimensions of the outline of the engine,
and one already knows the exterior diameters, I and D2 9 for the intake and exhaust
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of the ring covity diffuser as well as their interior diameters, 171 and , and

length 1;, then,

The area of the intake of the ring cavity is A,--! ( -
4

- The length of the circumference is L, w<ff + J,);

- The ar- of the P-rhaist of the ring navityj is A, - (Di--),
4

- 'he leneth of the circmiference is L-D, + ),;

- The inltpke iiame+er of the eauivlent nonic section-type

dif '>ser is D, - 4.__
L

J

- The exhaust diameter is D-

- The angle of e-ansion for the equivalent conic sectin is

I----1  (2.10)

2)

See 4, Design Mthods for Interior ;alls of Dif-users

The shorter is the length I of the diffuser the better it is. Ihen one fig-

urps out the angle of extension, 20 9, by substiting in equation (2.10), it turns

out to be quite large. In oxer to 'revent bolmd7yj layer se-aticn a.d to _-fuce

losses in overall -res sue, one must always employ the rinciple of "equal nres-

k: sure gradients" in the design of the shape of the interior walls of diffusers.
The design procedure in as follows:

(1) Data which is already known: intake are., A1 ; quantity of gas flow, O;

overall temperature, Tj; overall pressure, 7 * Mach nr- )er, Ml, or speed coef-
ficienp 2,,1'ticiut, area extension ratio, A2 /A1 ; and length, -1.

i(2) Pgure out D and D2 , and figure out the angle of expansion, 20, using

equation (2.10).
(3) Consult Fig 2.3 (a) and (c) on the basis of the values of M and 26, and

27
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(3) (cont'd) after the introduction of appropriate corrections, the coefficient

of total n-essre loss, -K._
(4) sing equaticn (?.-) or (2.9), first calculate the coefficient of total

.res._ue recovery, a i' -.d P, = Pi.

(5) According to the continuity ecuation of flow amount:

G - 0.396 Aq) _ 0.396 (12)p [kg/s]

(2.11)

Because~i is an adiabrrtic ae'od .amic n-oceso, the overall temperature along the

T therefore

ai- chml dons not change, that is, 1 = T - t e e:

q(13) - q(1) --,

c % ~reie vqlue 'for q( ) check out the charts and et vaiue- :o-:

3&sed on the values obtained for ' " ) and- ( ,

- lnt-:.k st-tic pressure is P,- (2.13)

- Mdhaust static pressure is p - (3) (2.14)

- The static pressure at x is p, - P:(X,) (2.15)

-Determine the len-th, 1 , of the diffuser alcng the horizental or x coordi-

n. by using the scale. :"irst, assume that the total pressure, , falls from

I along a straight line, x. (Fig 2.4) Calculating in this wayA any possib-

I one might deviate on the low side can be overcome later by corrections.

D-aw out the equal pressure gradient

. dR - - -. p _constant stra±;ht line -p, -.pg + p,.. (2.16)
ds At I (16

3ince we already know the air flow quantity, G, make use of the aero-
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dynamic fumctions:

.Vr, .,) -.G 0/21 . v -

0.396, P4((,)'

C G -const (2.17)
0.396 ,

(10) From Fig ?.4 one can get values forP and p,; in order to obtain

(' zet vaues for Iu and y(>x) , =bstitute them into equation (2.17),

and figure out r and the cross section, A = r4 .
x X

(11) On the oasis of this value of r x figure out tg 6.

then, using :2t% and M,, go back to Fig 2.3 (a) and (c) and get f,.
X

(12) Using eouaticns (2.8) or (2.9), find the value of e, and see if it cor-

-sronds with the value of4ao,-ostulated on Fig 2.4.

(13) If it does not correspond, then, one cin adjust the value of ,, as shown

-n Fig 2.4 and redo the calculations.

(14) Take 1 and Iivide it into seviral sedtions using an interval s& x to

tefLne the sections; take the M value for the forward section of the exhaust and

use it as the M value for the lower section of the intake; on the basis of this

procedure, figure out tle various values of r , that is to say, draw out the equal

pressure gradient which lefines the profile line of the interior wall of the dif-

fuser.

(15) In order to guarantee the smoothness of the air flow, me ought to use

a -rmoothly cuzving, con tious line to connect the exhaust of the diffuser with the

in+erior and e::rior- shells of the combustion chamber, as shown by the broken

line in Fig 2,4. In order to improve the techmical characteristics, it is best to

use a segmented, rounded arc in order to piece together the line which defines the

form of the interior wall. When one considers the "displacement thickness" of the

boundary layers, it becomes appropriate to enlarge somewhat the cross section -f the

exhaust, A 20
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32.4 *9*WV2Rg

Mtod for Drawin,7 Cut the 7Yo-ne of the Interior '.all Defined byrte:qa

L 'i.? Line

c of --r, irn vijr .Tirsers L.d Combustion

(I) Because of the limitations cn qace, -'>e len-th,:l, of r._r cavity dif-

, er is ver7 Ohort; the eouivlt nj!e cf e:: zion, 20 toO; 1 herefore,

the boundary layers on the interior walls will certainly experience separation, and

there will be formed vo-ticsl turbulennce fl'r; e--cause of this, the total )ressure

losses, A P, are very large. Zven if the system is in a state of stable operation,

the axial flcw (or centrifugal) compressors, due to the power added by the blades,

cause the flow speed distributions in the intake of ring cavity diffusers to be extremely

m even in both a ridial and a circ'u-f-erti:. -. rection. On ton of -his, aftir

the turbulence flow caused by boundary layer eparation inside the diffuser has its

effect, the rdistributions of total aressure and quantity of flow in the exhaust will

be even more uneven. This will influence the air intake of flame tubes in a way

which is distributed according to predetermined proportians as well as influencing

the internal flow field structure of the flame tubes; because of this, it will also

influence combustion characteristics.

If one chooses Rn "appropriate location" on the inside walls of s diffuser 3nd

cuts a ring-shaped trough, then, bores several air holes in it, connecting them to

a vacuum pump or to a telescoping jet amparatus in the tailpipe, then, it is
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possible to draw off sensitive boundary layers and prevent separation and the fo2--

aticti of spiral flow patterns, thus improving the exhaust flow speed distribution

(?vig 2.5).

The width of the ring-shaped trough1 for drawing off the gases is 0.25 (cm)-

and its depth if 0.63 (cm);

M*2.5 J9 s X3m*

£ ~ I6 ~ VW WU: 1

'1iz 2.5

1.* Diagram or a Plan for an 3xneriment in Drawing Off Boudary layers in a Short

Ring Cavity Diffuser 2. Amount of Air actracted Through the Outside Wall 3 . Amot

of Air- -'-'c-ed ITh-ciug the insile ',!all 4. Radial Distribution of intake Flow

S-oe-d 5. Outside *I-ali- of the i ing Cavity of -.he Difruser 6. Inside '3a11 or the

Ring Cavity of the Diffuser 7. Ring-shared Trough and Suction Holes on the Outside

Wall 8. Ring-shaped Troughi and Suction Holes on the Inside Wall 9, Feed Line for

Fuel in Gaseous State 10. Brace Assembly 11. The Outboard Set of 48 Vortical Flow

c7anisters 12. "The Kid ile Set of 40 Vortical Flow Cannisters 13. The Inboard Set

of 32 Vfortical Cannisters 14. Mcterior Wall of Short Ring Cavity Flame Tube 15.

7teor Wall of Short Rig Cavity Flame Tube 16. 16 Gas Suction Tubes, Outside

*a117. 16 Plexible Hoses on the Inside Wall for Gas Suction
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On the interior walls, each trough has drilled in it 44040 2.4 gas suction holes;

the gas suction ar-a = 3904 (cm.) the volume of gas drawn off, X = 1.250 of the

intake volume; on the exterior walls, each trough has drilled in it 480 * 2.4 gas

suction holes; the gas suction area = 43 (cm-); the amount of gas drawn off, X =

1.1-31 of the intake volume, and the total amount of gas drawn off, X = 2.35 - 4.25

of the intake volume.

7,nr the forward ring cavity of the intake of a diffuser, the exterior wall dia-

meter is 4o0 and the interior wall diameter is si; the largest diameter of the

izcm~s'a - r is D = 106 (cm', and the overall length , L = 51 (cm). n hiz

case

L/D, !.
2

The 120 votical flow cannisters are ar_-pn .in three concentric rings- the

outside, middle and inside. In order to eliminate the influence of the vapoi--zation

o2 1i-id fuel, duri-ng exnerimentation, t naturl -. s cont tiing 95.5= -.oh ....

used as fuel. This natural fuel was distributed among the varius ducts and fk.d Lnto

the vortical flow cannisters; there was igiiticn and %cmbistion, xzd the cba-zt

fr-om the vo-rtical flow cannisters became the main combustion area for the "spi-l

fl'mes." The secondary combustion area and cooling area were both greatly shortened.

he angle of exTension of the exterior wall of the jiffuser, 6,, = 250; the

-angle of ex-ansion of the interior wall, - = 150; and, they are not syymetrical
•th re-pect to the center line of the ring cavity, Because the area of contact

b~tw~er the outer rino -7nvity and the air flow is large, the viscous flow drzg is

T-hrge, the fl-w sreed is low, an-d, therefore, when simulating high altitude flijht

at low sneed, -he major part of the intake quantity, G, passes through the inner

ring cavity and does not pass through the vortical flow carunisters. In this way

-c-t1 i lM o crea-te a rich '1- !n:i-+:ue in the main e.-mbustion area ind

-lrj- the -lariecnit thresholds. 2h- -ar-meto rs obtained from combustion testing

to simulate "crising" and " high altitude flamecut thresholds" are presented

below:

SAWS. G- .s/sj r-i-'' --. G, 0.o
ftl~uer(I - XG

:~ M *~.f 59 19.5 30 0.015

1.05 300 19.5 15-30 0-.0"

-.
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1, State Being Simulated 2. Cruising 3. High Altitude Flameout 4. Total Intake

Pressure 5. Overall Intake Temperature 6. Quantity of Intake 7. Reference Flow

Steed S. Fuel-to-Air Ratio

(2) The Measurement of Parameters and the Calculation of Capability Targets

Ring Cavitj Dif'user Intnke: 'We already know the area of the intake, A,, the

quantity of int%!:e, G, and we can measure the total pressure, P1 1 the static pres-

'ure, !L, and the ovira'll terner-turo, 2 w; we can then, on the basis of functional

equations for aerodynamic quantiti3s of flow, figure out _1 Acdording to critical@*

sonic equations, a= 18-3./7 , so :;e can figure out a or the sonic a. Because

of this, it is possible to deduce the aver-ge int'ke flow speed I/

In these experi-nt:, M, = .2 1 0.5.

Ring Cavity 'Diffuser 7bchaust: We slre-tdy know the area of the exhaust, A,

/0 .cm M-.Mxred the total Pr 3mure, ? , and -,he cv.z.ll temn-wrat' e,

cn .e -as:f cont'nuous fVl'4 c'iaticns, it is-'cT-: to :bta-ri v',!es

for qQl,, ); we can f-t the value of ),, from the chart and doduce t e avor' --- a'st
flOW speed =- '2~2a (m/s). In these experiments X2 = 0,05 .

Ring Cavity Combustion Chamber Mchaust: Using a sucticn-t-e -1, - -

tinum + 13% -niodium) mobile, sunported thermocourle to take sample messutrr:ent3 ,t

scattered points, it is nossible to obtzin the overall tempe:atur-, T ,-o: thq e::-

haust on the basis of the flow distriution weighted average. Using the same ty: e

of scattered re-dings, it is possible to obtain a weighted average for the total

exhaust pressure, P.. On the basis of the amoumt of fuel surrlied, G., and the

amount of *ntake, G, minus the amount of gas that is drawn off in the foru of boim-

Iavy layers, %,-$, it is possible to figure out the fuel to air ratio for the whole

-oD'bustion chambor, f = %f/(1 - x) C'.

e already 'ncw f (or/Lo)9 T2 and 2; by checking a table or giaph, we ca

get the averm-e specific heat, c
p

We already know the value for + . amout of heat contained in each kg of gaseous

fuel, H u , andt, based on the relationship OP - it is nossible to
determine the "id-l overall temperature", T-* (K), fbr the -ombustion chamber exhaust.

In this experimento the average overall temperature of the exhaustt T3 = 1230 (K).

Through manipulation of the movable sunport apraratus, it is possible to take

scattered readings in the exhaust which reflect the radial and circumferential over-

all temperature distributionsg r and Te; *. f(r) and T = f(r~ei); it is also
3 3
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possible to record the h±iest temperature, T 3m (K).

The calculations below then become possible:.,

-Combustion 3fficiency 7L
-x100%

-Ovral Tempertur- Field Form CoeV-1icient

/3 3c f --cne-im-nt-ti-n and 'i:,cu-si'on

:h Te of the drawizn,' off of '-oudai-y layers throlugh suctior o crbus-
- 0 I - 1,-c -* 1 1 -;-- I --

'a~ o th c~tbston ha~be Lt~k, 7 3CC K) simulating a condition

~~7r~'~'fl ~ ~ o: :eth Ac i-alitude flam~ecut. '!;e-n tIhere isz no suction, X=

a~~ora'~ with Xo= for the !s ffucked. through the exterior wall: when the

overall intake roressurep P 2 ' - 2 (k/m" the combustion efficiency, 9 when there

'3 sucticon as comtpared to when there is no suction, rises from 66% to 1=,"; when

i~ s reduced to 1.35 (kg/cm2 ) the absence of suction causes a flameout, and =0;

1001

90 -

so

70

-60- 7 --

0 X- 04'ML

IM I IT 0 Xu 51%

302826 24 22 20. 1S 16 15 rn/5

M 2.6 Jk& -x. I na"

rig 2.6

1,* Influence of the Amovnit of Suction, , on 2. Overall Combustion Efficiency, p~
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however, with suctin, combustion efficiency can still reach 66%. With suction, one
can make further reductions and still not get flameout until P2' 1.05 (kg/cMm2

U2 °I 30 (m/s). This proves that if the amount of outer wall suction, X , in asym-

metrical diffusers is chosen correctly, then, it is possible to postpone high altitude

flameout and expand the stability boundaries for lean mixtures. If only gas sucked

through the interior wall, X 2. "J5, there is only a small improvement in combustion

efficiency. If there is suction through the interior and exterior walls at the same

time, and x. + x °  553, there is an improvement; however, the results are not

-t -z'd as ":.n-,- 27cion - .. " 'or .. all i.- 7. :.e r.son for

this is that the angle of exransion for -he exterior wall is large; the angle of

exmansion for the interior wall is small; even if there is no suction, and X = 0,3'

there is already serax-ation alan- ;he extericr wall of the ring- cavity flaw -nth;

the radial flow sre.-d distri.uti=n is 7!rdy fa.ztor than the interior wp.ll flow

irzed, .to voi're of !_-w io . The small amount of taction tbrongh the

.-- r4i-r a" ! car-ot 1,n -. ! ." a -ole; '.vvr, a i- t-on in

cucticn thr~gh th3 ,: ericr I - 'oo .--7..L.ly elisinate ar--n.ratn and cause

- '-. : tr~- . . .. " - . -- 2 " his fact, there

. .I :-n"- r_-n.-- rf votical flOw

Irn, z rs -'n-4 in 7-C-;.--zt;4,-I

_he l%--olit -- e a-ir -,- trc ins fr-- fllw cqrnnis;ters:

uI -. o -1 . .. t . , ,".'-r', flow field of he _in ..vitv tifful'r.

2he iist?.ne. between -he nn-- ring of vorticpl flow cqnristers and the inner wall

as .gell -.s -i.e tistance -he,-'n. , -itdle r-g ed im.r ring of vort-cll flow

can:isters should 'c'h :e .e', .... l r ... n _> - nre etreern the nidi:le rir_ "

,nd the outside -ing or the outside r-ing and the outside wall. hen the-e is no

-uction, thiS causes the middle r-.-" of vortic-r flow cnzisters to do eve-t'hing

, os3ibIe to -r=v-nt a Z'crtie

The radal !i3tributi-r. of o -I. t-m_-ersture in the e,-haust of the conbustimi

chamber follows changes in the amount of suction, X S. (Prig ?77) %'hen in a state

designed to simulate "cruising", the average overall temperature, T3 , of the exhaust

of the combustion chamber equals 12?30 0 K, the average overall temperature of the in-

take, T2 = 589 (K), and the overall "fuel-to-air ratio", f = 0.015.

If one ref.rs to Fig 2.7 (a), the amount of gas dramn off from Vof the inter-

ior wall, X- 1.2556; if one eliminates the boundary layer separation from the inter-
ior wall, then, the flow along the interior wall is unimpeded, and the amount of

the flow is increased; because of this, the amount of flow along the exterior wall

135
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is reduced. As a result, the Deak ehbaust +e mPrm'*"e value moves out toward the

tips of the blades. The field pattern coefficient, 5, goes from a value of 1.,17

when there is no suction through an increase to a value of 1.75. his is because,

when there is no suction, the middle ring of vortical flow cannisters is already

short on air, and the local fuel-to-air ratio deviates toward the "rich" side;

besides that, the amount of air flow which supplies the middle ring and comes

from the suction through the interior wall is even less. Above the radius of

the midIle ring, the air fl w temperature Thows a deviation on the high side;

.elow the r-dizs of -he middle ring, it shows a deviation on the low side; there-

fore, the efficiency of combustion, j. , contrary to exnectations, drops to 395'

from the 96% which is its value when there is no suction.

'.hen the eaction . of the cuter wall, X = 1.1W, the result is the exact

c - "ie -he n ak temnerature value for the exhaust, Tm g moves towa.rd the base

of the blades. The temnereture at the base of the blades is raized aprroximately

-s -.. :a- :o hen there is no suction, and the temrn.'ture at the tin of

the blades is reduced approximately 2840C. -e major portion of the air intlke

sunolies the area above the middle rrnr of vortical flcw canistero, in : i'r ti

ixomrcve the nstion situation. The field pattern coefficient, 8 still e als

1.75; however, the efficiency of combustion, f , is raised to 98.5/.

Refering to PiZ 2.71' (b), suction on both sides causes the peak temre :ature

values for the e:-hauat to aorear in the area of the ring cavity about half wey up

itS h/eight. When there is no suction, the center ring of vortical flow canisters

"2.lr_ e-edy- be short of air; if the suction starts up on both sides at the same

tize, the midie r_- ill be even shorter on air; therefore, the tempera.ture of

th middle belt of the exhaust will tend toward the high side.

The effect that suction on both sides has on combustion efficiency, , is not

-ocd, and the fld -2ate-ni coefficient, &, 17o shows harmful changes. The reascn

- i. i t te of sucticn causes the distribution of air flow to the

three rings of 7ortical flow carzisters to be uneven, differences in concent--ation

to be large, and the ".hole efficiency of combustion, q , to drop. Besides this,

suction on both sides causes the main flow to be very sensitive, suf'er somewhat from

the effects of pulse interference, and immediate changes in the distributions of the

amount of flow and flow speed cause instabilit- in combustion.

The overall amount of suction, )% as it affects the total pressure losses

(I-r) in the intake and exhaust of the combustion chamber is shown in Fig 2.8.

The total pressure of the diffuser exhaust, P2= 2.13 (kg/cm?); the overall temp-
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erature, T2 = 590 (K); the Mach number of the diffuser intake, MI = 0.29; and,

the Reynolds number, Re = 1.qx10 5 -%' .3x10 5 . In a cruising configuration, eperi-

ments that have been carried out have led to the conclusion that: suction cn

prevent or control boundary layer seraration, reduce total pressure losses, and

improve ccmbustion characteristics; the positioning of the suction and

the amount of the sucticn must be aipropriate.

3

100

-60

sos

-400 -300 -200 -100 * 100 200

2.7 4ths"am" (T rC
1.5% &,-I. AjiM'tX*- 1.,; %.0 1. 47,ft

96%: V 8 m)j., F- 89%; & 8 - 1.75, 98. 5%.

-7M2.7(b) WitittNIA & K -J.95%, X0 1.2% a
X,-1.96%c,. X 6 -3.14%-: 0 Tdat, 61.47, 1-96%*.

X - 2.15%, 6-1.63,.,-q3~ a X -5. 1% 6
1.89, -93.8%.Hl ~ f ai <j<H.

Pi 2.7
1. Deviation From the Average Temperature of achaust 2. y/H % of the Ehaast Height

of Ring Cavity Combustion Chamber 3. Outside Diameter 4. Tilateral Suction-

5. Inside Diameter 6. Suction on Both Sides 7. Figure 8. Influence of Unilateral

Suction 9. No Suction 10. Inner Wall Suction 11. Outer Wall Suction 12. Influence

of Suction on Both Sides 13. Radial F xhaust Height of Ring Cavity Combustion Chamber

14. Radial Distance 37
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192.8

(0 t U -0.015-,

Fig 2.8
1. The Influence of the Total Amount of Suction on the Total Pressure Losses in the

Combustion Chamber 2. Data obtained from Air Flow Tests WIithout Ignition 3. With

Tmbustian Z.. o a. ?resur2 Io.ses

.ec : 2recial Charcteristics of ub-surfices

(1) Boundary layers, as they flow along the walls, can divided into laminar

fl w and turbulent flow. Because there are vortical masses in the turbulent flow

which cut across the flow and diffuse, exchanging energy and momentum$ turbulent

flow boundary layers are usually somewhat thicker than laminar flow boundan layers;

t'rilent flow 1 _" l.:...s can withstand relatively higher pressure grad-
"W "rih~ut exhibitin z ~micn.

( ) The laminar flow boundarI- layers get thicker as +hey flow alig their

course. 2or example, if a laminar flow bound--y, layer is flowing along a flat str-
f-.ce from the for,'ard edge to a place 10O (mn) lown the flad, its thickness at the

-nd of the run, . 5 (mm). If it receives pulsating interference from the main

2I-w, a !amLnar bctn. l- .. can t:urn ino a t-ar-nlent flow boundary lay-r an' -n-

(3) In the main flew, the flow speed in the normal direction is distributed

evenly; the cross current speed gradient, OU/8yae ; therefore, the viscous
friction stress, ' , can be ignored; however, in the boundary layers, changes in

* flow spe-d are great; the flow speed gr-tdient u/iy: along direction y cannot be

igored; because of tRhi, one must consider the stresses caused by viscous friction;

however, when flow speeds are relatively slow, one can ignore compreusvi'",ttyq that

is to say, t94. a constant.

(4) The static pressure of the main flow, , as it exists along the normal
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line y, passes through the boundary layer and straight on to the surface of the wall;

because of this, the rate of rresmUe change, Op/az. , alcng the x coordinate is the

same in the boundary layer and the main flow.

(5) Aks far as the two-level boundary layer displacement thickness, O, is cn-

cened, if one locates a certain point A on a wall surface, then, the boundary layer

thickness at point A = 8 (Fig 2.9).

Sur-ose ±>e flow speed of the main flow in Uir-ction x at a point outside the

bo.r- *ay?- which corresyonds to roint A z U, then, the flow speed inside the
:'?-r- ''-?o., u, - .!cng nosne! ',in,( , chany, fr- u = 0 to u = U. Ircwev i

'here is no viscous friction d=-.g, then, there is no boundary layer, .sndt necessar-

ily, flow speed, uq ?long direction x of thickness 5 should not be reduced, but should

-b e-- 0 to U. Sur-ose one r1rors ?. preTndiular to the surface of the il-

'"'z --ti.n "i:h a ln-mth = 1 ( T.' scme unit of length). Then, suppose one sets

t.;~n-s ur so '-At -he distritut'l.n function, u, alcng y, is equal to f(y). In =uch

M2.9

Fig 2.9
1, A ?4o-7,lement Boundary layer long a Curved Surface 2. Main Flow

Sne ha -.o <nt - .ii tot .'. iscosit and bo1.-j "_zyers, then, there ir a

j ass o ~ r.e cf x I av-z-y second, and

(2.18

* " if one discomts viscosity and boundary layers, then, there is a mass flow rate of

arl nd
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therefore, because there is viscosity, u', the actual rate of mass flow through *

every second is diminished so that Ad- dr-k;

eh- -.d pady p(U - u)dy

AG ._ PU58'; (2.19)I

T'-at is tc say that, because there i4 viscosity, and the wall surface oroduces fric-

ti -.. tres, r it -3 as "nough -- re "ral surtT ,ce has sc.teezed inw.ard a certain

distancep A, causing the rassageway to become narrower. Because of this fact, the

actual amount of air flowp as compared to a circumstance when there is no viscous

frictl In ,l-ag, i3 reduced to an amount, A G * Therefor-e., , is c-..led the "disolace-

ient thiclmess." Cn the basis -.f eua'icn (3,10), one c~n say that

disnlacement thickness U .* 0 (U - - Y - d ) (.2O)

In order to get the integr--l for equation 2.20, one must 'mow the laws "

govern the flow.speed distribution inside the bo,.mdavy layor, u = f(y), as .... "

the thickness, a)2, of the bound-ry layer. If onp is concorned with a turbu tit flow

boundary layer, 'it is nossible to use the "aver-r- zirne rar'meters" T-Jnd ;, etc.

and still be able to obtain the av-.-ag-e tine 1isnlacermpnt thic.mes,, ' n he

basis of ecuation (2.20).

(6) Aro-i2lement 3oumdary layer 'Homentum Thiciqess, S

Refering to 2ig 2.9, the amouzt of movement through.5 along direction x each

second is .epresented by - p"dy.

%vn if one suppcses tha there is no viscosity, there is stij., an ac-al -At r..,. nz

through ' in direction x, and this amount of motion, M = Uth; therefore, because

there is viscosity, the amount of movement or momentum lost when. th passes through

is d-scribed by the following:

A, - M . Ljp4

-0 PU - U)dy -PUS-,~ (2.21)

8 increases in thickness along x, and the amount of movement involved loses thickn.ess
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.si ( I - a.) y, U3 5 U - )dy; (2.22)

-

That is to spy, because of viscosity, flow speed distribution within a boundar-j layer

decreases from the boundary, , with its value U to the value of u on the wall surface

',hich iz u = 0; although the r-ttes of mas' flow,,f , through. 8 x 1 are all the same,

it is P.s hcigh he wall ,urfnce squee-_es in a dist-nce:e toward the :rain flow; due

0 t:-r' t *heactial air fl-w loses an amount of rorientLu=, a .', as ccniared tc.

an air flow ,ith no vZisrcsitr. .>5> . 8/-H>Z, iz called the "zreed

mattem template."

1, 7 t 1quaticns for Momentum of Dual Turbulance 3ub-surf-.ces

if one !-un.osez that he is dealinS with a ncn-ste-dy state, t.wo eleient, ncn-

compressible tarbulnce bolin-' er (Tig ?.1'), reu2..ir to ue .orf'ci t

the illustrstion with a dimension = -.ome tnit of thicmz:Ps.; e

thicknzss of . -ocndi3.-y layer, 8, varres with changes in x. r. = -he visccus

friction streso of the wall surface (1/_.).

First one 'Ixsws out a differantiation control area ABCD. At a -iven [nst-nt,

: , the flow speed of a certain -point in the botmdary layer, u u(x, y, t), and

the differentiated volume within the control area = dxdy 1 1.

The mans flowing in from side AB is

m~,)-dt :pudyi

U. A

Fig 1.10

1. Diagram of Integrsl 3quatic-n for Boumdary layer (,tnlarged) 2. Boundary Laye.r Limit

.Main Flow 41
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T-2he mass flowing in from side CD is

( + i, ) - pay'+" d

T'be difference between the masses entering from side AB and CD is

,,(X + dx,t) M(Sj\J) = &tdx puy;

The wall surface is non-nerm-ble; therefore, it is necessary for the air flow

• , to . cone in from side AC %nd refill the rotrol area.

-The momen-7um of the air that flows in through side AC, U dt dx- Pay),

The momentum of the air that flows n ihrough side A B - puldy

'he momenturn of -he air that flows in through side D 0.

The momentum of the air that flows in through side CD M + -dx
ax

- ,pu 2dydt + drdt o Pu'dy"
ax

Terefore, the nomentum of flow from ABD along direction x = dt d, -T pudy

-,Ud"& (2.23)

Concexning changes in the momentum alcng x, if t = time t, the diffenential momentum

of the control area dxdy. 1 = pdxdy. u ; t = time tdt, and the momentum of the
iifferential dxdy. 1
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mop + Lu dzdy1.

The increase in the amount of momentum along direction x which occurs within the time

interval dt inside the differentiated volume

-dxdyd.p 2

-he increase in the amount of momentum in direction x which occurs within the time

!nterval dt inside the :cntrcl area A3D

-npdzds au 4,. (2.24)

The -ite cf nhange of -1orrntm al- n-iecti-n x ner secord should be eauaticn (2.39)

+ (2.40) once again divided by the time intervPl dt, that is to say,

y d-; p . I & y +  -pdv I\od -- 1 1: tay) (2.25)

one -,7ores cr-v-W. thor, -h !?7t--.21 f:orce: ex:erted on su'ce .B = + p,

(,alues In the direction of the air flow have a positive sig);

The Pxte=-ial f orce s exi rted =n gur±ace CD = ~+ PdE1 dx) (8 + d8)

- at.- d - I
Oax

The external forces exerted on surface MD = -' rox 1 1 (the viscous

friction dr of the wall surface)6

As far as the contact between the surf-.ce AC and the main flow goes,

if one ignoes the v*nmosity, p, then, the force of friction = 0.

If one asspes the average Pressure received by surface AC to be p, then, the

force exerted on surface AC = pds, 1; the projection of pds in direction x =

(pd,). ,_- . dealds a tsa
di

(Fig 2.10). Therefore, the total of all
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the external forces exerted 6n ABCD in direction x is:

XF - P6 - dx .L-Pd8 - ?'odx + pa8
Or

--8dx rodz [N] (226)

Acco. Aing to the principles of Newtoniqn momemtum, if equation (?.41) is set equal

to (?.t?), one ,ets the differential equation of momentum for non-stable state, two

element turbulence flow boundary layers:

P dy+-2 :pu2dy- ~- Jpudy

-- 8 2 - irs [N/mi]  (2.27)
a:

?r7 m this --i.ti-n one can infer four xrikncwn iuantitips re] tinc to bolnarj

*vrer flow -t -n nst-mt, I, : the flow speed, u, in iirection x; fricti -n stress on
SwaJi! 'uf~e' , 'o; the flcw sneed, 7, on the boun'."- nrns -f i flow and

0

'he rrincinles which wnnect it with tressure, p. The inde9endent v-:riables are the

inslnt of time, t, and the coordinates x and y.

3ec 8 Analysi- of St-ble St-te Dual Incomnressible Turbulence Sub-urfaces

(i) Method of Analysis

it is for the lack of only four riiaiown isqntities that we cannot solve the
e ti ( 7). j the skill-ful use of "averaged time" -armmeters, s.uch :.s t =a V + Er,

U-a + .'etc., it is possible to use ncn-ste.dy states in the role of ste-dy states

in =!er to ?aalyse air flows, that is a17 )/a t = 0. The main flow can ftuction in

':'. ~ re of non-viscous ",CsiiAn.'l flow" or "otential flow" in order to "aIncle the

lnlysis. If ,.e alread~y 'mows the narnete-s, P1 , T1 , 1 and 1 for the -hare of

the diffuser nassage and the intake flow, then, it is possible to figure out, on the

basis of the "cotential flow" the values of U and. OP / Mx for the main flow. -This

quantity, a /8 x, is also the pressure gradient for the boundary layer in the direc-
tion, x (See Sec 6(4)). WitiLiLn the boundary layer, it is possible to think of the

density, P . as being umchanging, that is to say, to ignore any compressibility that

might be involved (See See 6(3)). As far as the friction stress, r 0, of the wall

surface is concemedg, it is not possible to figure this quantity by using once again

iquaticn (2.1) from this chapter. Because of the fact that, within the boundary
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lay- rq there is no striated, non-turbulqit, ).aminar flow, but, on the contra-ry, vort-

ical masses tumbling over one another and pulsating, the value of the viscous fric-

tm drag involved is very greatly increased. Due to this fact, it is only 'rossible

to in.iiice ex-nrimental la-ta in order to obti an empirical formula for figuring'..

(~) Spee Patern emplte"Euationh for Tujrbulence Boundary layers

Ten one is considering a steady-state, non-comressible flow, thui in equaticn

-0, and p=a constpnt; because of these f-acts

d.ud - pU i -dy -

(2.28)

(-he main flow, U, -nd are unrelated)

If the -11-c f--7nctli-nal r-rcd'cts are -Ufnntae v-ir xc:

4r [U- udy] - i!-i Udy + U I i'udy., (a)
dxl o dx JedIJ1

Considering the main flow, the Bernoulli equation can be difforentiJated to become:

Ax dx

U iLs 3:Larly a fu"M-ncn -)f x; It iznct 1~' o~;th efrc,

If one take (a) and (b) and substitutes them into equation ('.28)# it is possible to

-- t the uolowdg d -. 7. +r a ~ rP-~~ ~~ u -p-I.ud.I +- P---.-I

tUsing (c) and 17d7

* Using the displacement thickness, 85, and the momentum thickness, e,(See Sec 6(5) and
(6) of this book), -equation 2.29 becomes:

02 ! '- 8 + p -L ( U 2&) -
dx dx

'"his can be rewritten as follows:
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where

.1( +H) -U- ra', where H-'-->!I

a U dx pUz
(2.30)

(3) Tstimatian of the Boundary Iayer Thickness an a Smooth Surface with No

Lncre.se in Preszure as Basad on %mnirical Formulae

* 1 4,4 C. lay, ,e~s, which all h ive dif"-e nt me-nin,

8, 8 and s, as well as the friction stress of the wall surfaces, '-o. a-re all fun-

ctions of x. On the basis of wind exrq riments with tubine Pnd flat surfaces, with-

in the boun, -_r, layer , the listribution cf flow sne A, ip u .I no_=,.al line, y, ir u
erUal to f(;r), ',ri -h can be Ier. , - he -- sre.r- fb a -lrsert& cw:

the emrirical foznmla for flow speed distributicn is

u . - 2 , 35 , , 6 , 7  (2.31)

'he emnirical fo-n-ula for friction stress is

0.0225 4ic' , - 7; (.32)

puz Va SCIOS3.ty

if, in the main flow, the static --ressure, P',in diraction x does not !han:e,

and, if one sets n = 7 in ecatation (?.31) ind, then, substitues this Ln-o e--.ti'ns

(?.?o) nd (?.22); after integr-'tion, it is possible to arrive senarately at

,,alues for the displacement thic.ckess, io "M and for the momentum thickness S =

7 " (.333).

k.suming a amooth ",all, from the fox-ra-d edce to the lower --.ch-. of the flow

at a point, x, within the boundary layer, because of the necezsitr to overcome the

viscous drmg6, f before there will be a loss of momentum each second,

J-0,18 U(U - 04.,

however,

therefore, the friction stress on the wall at a roint, x,

Ire -u) dy,
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Using (2.22)

ax dx

Comparing equations (2.32) and (2.74),

_!L - & .7Id 6 0.0 2 55 (2.35)
pEl dx 72 dx Lu8'

Utilizing the boundary conditions: Let x = 0, # = 0 (Fig 2.10) using the integral!

.!uation (?°25) we get the following values for a flat surface:

-3oundary layer thickness

a - 0.37 xf (R)'4 (2.36)

-Di.,lacement thickness

= 0.046 x - ' (2-3-)

n-ientunm thiclmess

a 0.036X*( ( R o (2.38)

It is possibla to figure on the basis of e uation (2.37) for axisymetric flow fields

in pssages with eoual cross sections and y consequently, possible to appropriately

expand the cross secticn of the exhaust.

(A) Ascertaining the Conditions for Sepaiation of Turbulence Boundary Layers

Concem ing the drop in speed and increase in pressure which one finds in an

expansi-n passage, there is a positive pressure gradient d.,/fdx , and one cannot

use as the exponent of the empirical formula for the distribution of flow
n 7.

speed in turulence flow boundary layers.

Assume that the flow speed within a boundany layer equals u(&) at a place where

the momentum thickness jas', and assume that the total pressure at that place is P (.

Ignoring compressibility, the total pressure of the main flow, P , and its kinetic

pressure are, resp-ectively: po -- + low,
2 IMqi

(2.-39)

The total pressure, P (.') at a place rewithin a boudary layer < P

P() - 2 -- )
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Because viscous friction at a place-S:causes losses in the total pressure,

AP *-P()-I-P2[ u(a) (2.40)

in the equatiolabove, the coefficient of s-eed -attemn losses in total pressurnet

n =1 -!-&2 is a funiction of H.
UZ

Fni- dpdurtons fro erimptal -lata, one arrives at the speed natteni template,

Hand it~i rel.ti rhi-r to ,-7, as ntiesentpd imn Fig ?,11.

~~= 1- IHH1lM (2.41)

2.13

2. * I

1.9

1.5

1.4

Tig 7. 1i

The Cir,-e *i thme -- " atb'-:rshin -3otwn the S?*?r Patte-m ?PrjplAte, H, -and -,I

-hen H = 1.?I, and '1 0.3, a tIrrbul,.:!t 'ooun'ary layer begins to separate.

7---z:4--g "e -f 7-n-ai Point S

The 3Re:'rolds nunib-r at -,- -'1-c a P Re(&-) 6 - X 102-5 X 10';
V

The viscous friction stresses on the -rall surface are as follows:

44

If one substitutes equation (2.42) into ec-iation (2.30) one gets the following:

dx L;dx '
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+ 2+ H) -4Itt (2.43)

According to the principles governing potential flows which have no viscosity, and n

the basis of the parameters, P1 9 Tlt p,, and K1 for diffuser passageway configuration

and intake air flow, one car first figure out the laws which govern the way in which

the s-eed o" the rain flow, U and EU varn with changes in x.
dx

i cr'e tesuorsly -us s the speed -attemn tem;lae, H = a constwat, Fnf

the hi .tic viscosity, v = a constant; then, suppose there is a complex pars-eter,

D E = ,- Ui) , *:hich varies with changes in x. (2.44)

+ + H) -. (2.45)

If one makes n - (2 + H) - -, a com-oarison with equation (2.43) revezls that
4 4

S -5 +C (2.46)
dx 4'.

Ho.?ever, from equation (2.4Z),

QV. &t u4 U " (2.47)

if one cz-nares equations ( .4C) and (2.47) and consults Fie 72.12, he will s- that

C.0128, and K 1.4, th . m 4; it 4! then possible to get th- fcr-

rula for the relationsh-ip between 9 and x as v v.ries with cfhengez in x: x the

distance along the wall surface, and

U.) 0 .016 U4' Wdx* C (2.49)
v U4 U 1 .

. ur-ose thot we a.re-.d know th-t, for the diffuser intoke, . - x1 -nd U= U;

moreover, su-n-ose that, according to equation ( .38), we figure out the momentu=

thickness, 3,, of the boundzrDy lay'er at a place, A1, in the intake, and, then, it is
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poszible to get a precise value for the integral constant, C, of equation (2.49) as

shown below:

) .0016C C -- 
4'I, (2.50)

From equation (2.3S)

D, - 0.036x, ,V, 3)), 'x,

(2.51)

"nh we sub7sttute ePuatinn (2.51) into equatio. (2.50), we get

c =(°:036) 0.0158-. xrjU ,u (2.52)

0.016 
0.016

FiC 2.1? is a detail from the inner intake wall of the rine eavity diffusor

shown i. Fic p.5. Oy rerrpents a cross section of the final stage of the exhaust

of the conpres :ror; x. is the length of the cylin!rics! passageway vhich hs cross

sectics ide!tic;.l with the first onei (2); is a cross sect-son of the diffuser intake./

Xle a.re-dy zic-, the. v-lue -I xi1 , and, know:inC this, equation (2.49) rerresents the

euation for fi , rint the increa-se in the mom-ntur thickness, , from x to the sep-

anation point, s,), in the direction xo If one choses a test value for the distance,

X sand for t"* coy'esponding value of U for the main flow, then, it is poscible to

firur. out a comresrondin &,- from equation (2.49).

Besi' - t ds9, t zou r. the use of dimeszional analysis it is possible to obtain

the re.sult riven below:

q Lx - L 2

111 B. [• ,U2] (2.-53)..

/2

,. 4- -,. i _- a r.,,.l i

-. ...

4 0,i

Fig 2.12

Figuring the Position of the Separation Point, s
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The main flow has no viscosity, and no loss in total pressure; therefore, P

equals a constant. When the differential equation, (2.40):

dP'(&) d(q7)
dx d. is substituted into equation (2.53), one gets:

+ A(qj)'- TBq (2.54)

-,liminatin the various (1/2) p quantities in equatinn (2.54), one gets:

8 U + (V2,) - BU2  (2.55)
dx

In the equation above, the constant, A = 0.00894l B = 0.00461; and, = 0.516, If

the sneed rattepn total pressure coefficient, :> 0.516, then, the right side of

equati-n ('.53) w!l be positive overall. That is to say, the mechanica ptstial.

emer,-: which is received by the layer of air flow that has a thickness, , fr.n con-

tact with the outside layers is re~tpr than the mechanical potential energy which

is trmasferred to the wall surf ice. Or, one could also say that it is smaller than

.and th thc air flow that hugs the wall surface does no' funish enough momemtwm

to hiCnhr layers of air flow, and they lose their eergy for fo'2ar,'. m 'eent; the-e-

fore, the onse+ of senar'tion occurs.

If c~r * . -.. -h vp!ue ofi, wh .rh is arrivei a7 em'-irically and substitutes it

into o, _Cz-. .95, onc can zz ve fcr 1.; check tc s-e whether or not- = C.6

0.6, nr, cn car. check Fig 2.11 to see whether or not E = 1.4,- 1.9. If these valuies

are i'. thin this _-ee, then, th xs which you have figttred icieed te cocr='.inrt.

for the print of separation, sI and q2* Cne should locate the nositions on the wall

surface for the coordinates of s1 and s2, open a seam and drill a hole there for the

drav:inC off of gas.

(6) A quick Way of Determining the Position of the Boundary layer Separation

Point, s

;aking reference to 2ig 2.1 (b), due to the reduction in zpeez and the i-cr-7-C

_n nreire, the p'Pssure gradient dp/dx:, of the main flow in the direction of flow

is too steep; it enters the botudary layer and, within the layer, it causes the

curve, u(n),for the distribution of flow speed along the normal direction to run

right along the wall, and, consequently, its slope, (40/d') = 0; the stress of

friction '.nag for the wall surface, r= 0, or, the curvature { (Ou/&,) quicky

chang-s to a negative value; the place where this occurs is the position of the

point of separation, s,

The place in the intake of the diffuser, which has the lowest static pressure,
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As is the place where the speed of the main flow, , has its highest value.

Assuming that, outside the bottom layer of the laminar flew, the values for

the total pressure, P, along the direction of flow, are all equal, then, from the

intake to the &xhaust, the speed of the main flow, T, decreases in value in a linear

fashion.

By definition, the coefficient of static pressure is as follows:

C - -- C, > 0, (2.50)'

2

The coordinates for the cross section of the intake and the point of separation are,

resnecively, x1 and x S(Fig 2.12). If one figures out C and ( dCdx) according

tc the laws Love=r.InC a lin-"r reduction in speed, then, they ought to agree with

the eap-ricn! formula below:

(Xo - xa)'C,('d')9 0.0104 - a constant (2.51)'

The softer and slower is the decre-se in the speed of the main flow, U, the more

does the point of separation, s, move down the rath of the flow.

Sec 9 Diffuser acrperiments ConcerninC Sudden Diffusion

(1) Sec 2 of this chanter pointed out the fact that after the angle of exnan-

rion of the diffuser, 2%O>"4O, the los.er in total pressure were f&ver lcrtrr tlhAn

tho sudden dif'xsion losses, If one eliminated the effects of suction in controling

bou aan layers, then, the periodic serart-tion of boundary layers gives rise to a

ulsntn flow, and cornbustio7, is not stable. The purpose of putting an "elephant

trunk" or a "fish mouth" at the forward end of a flame tube is to do ever-ything pos-

sible to cause the core of the main flow entering the tube to flow evenly. Ccnven-

rirC '"wtity diffusers nol! o'.ly occupy a long space, but they also can only

re."on6 appropriately to the intake flow fields and distributions of flow of pre-

detez tined confieuraticns. Operating speed changes; flight configurations change;

"he intake flow fields for diffusers and the intrnal and external ring cavity flow

.istributions of the type Y0/i i all change. Conventional diffusers cannot respond

arropristely to these types of chances; due to this fact, the characteristics of

combustion take a tuzn for the worse. Sudden diffusion, on the other hand, can

respond ap-ropriately to flow field changes.

(2) The Purpo se ard Fic-thods of Model Testing of Sudden Diffusion Diffusers

in Short Ring Combustion Chambers
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In the intake oi the ring cavity of combustin chambers, if we uses smal, short,

ring-shaped "pre-diffusers" in conjunction with the compressor, then, the angle of

expansion, 20', will not exceed 180 (Fig 2.13), These "prediffuisersO extend into

the combustion chamber ring cavity and suddenly expand to form turbulent and dis-

orderly flow fields; moreover, around the circumference of the exhiust, they sep-

a-te to form a pair of large'spirals (actually, these are two large, concentric

vortical rings symmetic-l around the center line of the turbine jet). If the shapes

of the intemal an e'-tena] shells of the rinC cavit-y are aprorriate, it is nos-

Jible tc naintzin t'iese two vortical =in,-- i a -tn.d' and u-movin "edltin; due

to this fact, the amount of intake flow into the ed.y current a-pa-mtus and the

amovtut of intake flow into the interior and exterior ring cavities, M. and M 0,can

maintain a very ste ,4 distribution. --ver- though suiden diffusicn fl.w fields arc

disord.erly, they can lessen aerodynamic interference in the 1rnper re~chez of the

flow path and retard surging,

In these experiments, we followed the correspondiinC d±mensions cf actual objects

in the making of models and in changes: the ratio of the anounts of flow in the int-

erior and exterior ring cavities, No/M , the distance, D, from the forward portion

of the ring cavity flame tube to the exhaust of the prediffuser, and the prediffuser

angle of expansion, 21,9 in test bed air flow experiments without igition, all

determine the intake flow speed distribution at A1 and the coefficient of total rres-

sure loss

(weighted ave'rage of scatterod re-'din-s on the
2 momentum)

The static pressure recovery coefficient

C, - (arithmetical reaveraging of readings for the

2 P1 static pressure on the interior and exterior

walls)

For a representation to scale of the dimensions of the model, see Fig 2.13 ( for

numerical values, see the table given below).

The ratio, D/h1, between the distance from the exhaust of the "prediffuser" to

the top of the flame tube and the height of the ring cavity passageway changes from

0.9 to 2.5; 2i'- 6, l40 and 170; the distribution of the amount of flow, M/Mi
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0.5--~2.0 Mesurmens wretake of the distribution1 of total pressure and the

static poressure on the interior and exterior walls for the three ermaq s etiwna

6®t andW OnJ.(ce measurements were taken of the intake volume# Gj and the intake -)Ych

numberp , " 0.26, then, an the basis of h1 , it is possible to figure the Reynolds

number, Re, g IiX 10%

di 2_ # 2H,

0.944 0.911 0.094 1.245 0.9n3 1.160 0.49

Hi 4. .* 4m d.4,A

D.707 1.50 1.773 1.353 0.773 2.135

In the final sections of actual compressors there are flow guides and a string

of wake vortices; because of these, the distributions of circunferentialI and radial

total pressures, P1, which are caused in ring-shaped passages, a-, well as the difs-

tributions of flow speed, W1, and densitp, pL I are all vezry uneven; dlue to this

fact, the tot-al pressure losses are increased. Because the influence which a strinC

of wake vortices has on-a flow field is umevent it is possible to define three types

of flow form paraineters. During thesc tests, in measurements made of the intake, AV,

these thr-ee 1ty pes of parozeter. could be distinguished by their cross section oc-

clusion ratIios

A,JJ pW) .8

mT)e incmetum flow form vrneter

Te Piei nera. flow form rarcmeter

f= A-1.06.

(3) Results of Ebperimentationi and Discussion (For conventinal ring cavity

diffusers, fe'0.3.t 0.4)
FPie 2,14 is the cu-rve for the distribution of radial flow speed in the diffuser

intake, A1, as obtained by the plotting of measurements. Due to the influences of

floyw guide wakes and secondary flows, in vicinities where the inner shell and outer

shell radiae,* -~ih 0 and r-ri/h, - 1.0, the flow speed is very low and W,/- <

1@0. When wakes were involved the evrmess of the speed fozm distribution w"n~ not as
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good as when there were no wakes; because of this fact, the total pressure losses

in the diffuser were increased. A string of wake vortices is a layer of air in

which viscosity shear stresses are concentrated. After this layer of air enters the

"prediffuser", the vortical masses are attenuated and dispersed, stirring up

boindany, layer separation counte-currents, and disru.pting the functioning of the

diffuser in the areas of reducing speed and increasing pressure.

Exrerinents revealed that the presence or absence of flow guides in the final

stages of the conrressor had a great influence on the intake diffuser of the com-

bustion chmv~or.

tit&

B1  0.107 0.28-2

- f ~ , 3.039 ~~
a 0.1 0.2 0.3 0.4 o.5 o.6 0.7 0.8 0.9 1.0

A,

Fig 2.14

Inta - -d Patten . No Wakes _ With Wakes

Fic ?o I howr how th- tnta2 rres-nre loss coefficient, , varies with changes

in diffrert fl,:. ano€nt ntios, F/K and distances, (D/h 1 ). If one is considering

the influence of the absence of wakes, then, the lovest vlues of I occur uder con-

ditions in which (f/h*) 1.0 and Y /?l & 1.3 -/1.4. '.hen there are wakes -resant,diinsi hih( =.00-ndEoi =

the lowest values of:f occur und-r conditions when (D/h.) - 1.25, and (F'o/Ji) = 1.0'

1 .1. *.4hen there are fio flow guides rresent, the most advantageous dimensions and the

most advantageous distribution for the amontr of flow are as follows: ?9 150,

(D/h) = 1.259 (F 1) =-

Fig 2,16 shows how the static pressure recovery coeffieieut, C,# varies with

changes in (D/hC) and (No/Mi). fCe in the diagram is the ratio between the speed

reduction and pressure increase of the prediffuser and the quantity A,

Sis the static pressure recovery) coefficient fro= croev section ( to cross section

! -hen there are no wnkes, and (D/hl) > 1.6 while (Mo/Mi) = 1.25, the decrease in

speed and the increase in pressure occur almost entirely in the "prediffuser." At

the same time, on the other hand, the air flow which divides between the inner and
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Chapter 3 Laser Technoloey for Measuring Flow Fields

See I Tracer Point Dispersion Pays

In an air flow it is possible to mix in a fixed concentration of pa-rticles, sulc
as dust pollutants, vaporized oil droplets or to intentionally mix in some vaporized
silica oil. These tracer particles receive the illum-n tion of laser light ad be-
come rzani "seco-d-n. point sources c'f light" putting out diffusion r-ys in all dir-
ec-n. -.7nen Gargling w-Tcr is irters'ersea with Cains of sand, an teZe -r. :.s
are hit by the glorious rpys of snlirtht then# one can see the flash of gol .2Ljut;
this is nothing but the "-eflection of diffusion rays from the grains of sand.
"e liar characteri7tic of these diffusion or scattering rays is the fact that, alone
the nath of the incoming light mr-ys, the part of the diffusion or snnttr:.Ln ray
which is re:'lected back alone this path is about 100 times stronger than t'-e -art of

the 4i'fupion ray that goes or in th- original direction. Thc ra ndom rovernerts of
...._ e- - ,mall particles (i.e., particles with diameters of O.l ) ( ro . mo-

tion) are analogous to molecular motion; however, compared th th turbulen: t
pulsating flow speed. f lnw p... c " , o " o'tcr .f the mctiotf is negligible. Al-
thou& minute particle: can acc - fol o, the directions of linor of fIow, the
diffusion rays from them are too w -ak an are not vr,7, roo tc use, -'.
Sar er -articles (pf L04., ), because of their large inertia, can cx:.ibit "sneed

-' ~ r~o-%-norncre--se-- -in the peei cf f~ov. -"cause
of this, the use of the diffusin r-ys f-ore large particles in order to me-isure
flo, speeds can p-roluce errors. Therefore, it is necessary for the dimensions of
the tracer particles to be such tha.t C.1 < .. ; moreover, the corres-

ronding concentritioms of the particles and the air flow should not exceed 1:2000.
In thin w.y, the error in the measurement of speed can be kept smaller then 15.

2ec 2 Double Bundle Parallel laser Nethod for Meaumring Average Flow Speeds

Fig 3.1 shows a flow field which has been measured by a double bundle parallel
laser emanation, The signals from the light rays scattered back by the tracer
particles is received by two photoelectiric multiplier tubes and sent back to an
oscilloscope timer or a multiple Mth sampling oscilloscope which handle the data.
The laser light source is a continuous optical excitation tube using ions of hel-
ium, n-on or argon and with a power r-ting of arproximately 100 mW. On the pre-

4
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focal plane of lens, L1 , there is arranged a double refraction crystal; this crystal

takes the laser light source and divides it into two bundles of polarized light (See

the enlargement of detil A in Fig 3.1). These sheaves of polarized light pass thro-

ugh the rear focus plane of the lens, L, and becomse two parallel bundles of laser

light, 1 and 2; t"hese two bundles then shine through the set of lenses, L , and onto

the area of the flow field being measured, area B. Prom the enlargement of detail Bt

one cen see that when the tv'c narallel bundles of 1asez, !I -ht are focused on the ver-

cross s et t nf the flow field being measr-re. .'-"," r twc "li;rh-'t - assaes",

an- '. ; t"- .. . tese 'arvsane :-. twoch r2 te i t-t nassa-

-e .iLs ilke a ribbon which- is w;i:je at -he ti. onaz in. 'h'e

.C Ikne ss at the narrowest point is only 5-10p , * Ths can concertrate the stren-

sl of In corin! li-htt on a vr-, small area, sna incr--so the sensitivity level

c- -Ii,-e'"n~ n taken. !-' one :scr':r'~- rtic.ef 1v)-en one

ta.:es the aver-age speed, r a at which it eoes thrcut -he t-.o lin]t nassagcst s.cha

scattered r .- .ses , 0 ar n. ...th--d b,- rnsl I, rflected arni rertr-

Pted by, a -p'o.for.-- t 2zc ,2rr r "r", -. 'tr -p:" "r,- , bq'.

t'.!3 bundles o% U.'*t EThe .n. e Cn Qr -- t.f t .. . .t 'C-

as Dossible the int-r'ertn ........ ".. " -- . .

the flow field being m-P''rd and, thereby, o. .'.-.se the i -
t ,e t'. bundles s' 2) 1 "' ' *.. + "'' " -"O tc xfi':7

sile, one for -rch hole ene are acprte;.d or oexived '-ectivel' b- hCtoelCectric

-. . . " ~..qcn the Ponv_-e er-c 2.......

tracer -m-ticles nass thrcugh the two lijit ape-rtr-es. If we assume that .At-2

seconds, we already Pnow the 4A -0.5mm, and# co.sequently, the average time flow

o. .... rto
a _ s 0 .5 x10-1 . 250 [wls). (3.1)
At. 2 X 10"

With new types of electronic instumetation, it is possible to get a clear req-

cl.Ltic even on signals with value o f,&' o nillinicrosecond (10-osee). If there
:2 a need for it, it is also nossible to make fine adjustments Ln the light pith so

as tc wideth interval between light apetures, A ", Because of these methods,

it is possible to measure super-sonic flow speeds of several thousand meters per see-

and without the degree of error rising above 0.50.

Before one can employ these methods, one must first know the direction of the
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Fig 3.1
1. A Schematic Diagrar, for a Double Bundle i Parallel Laser Scattered Ray Instrument

for the MeasurinC of I'low Speeds 2. Time Display Oscilliscope or a Multiple Path

Sampling Oscilliscope 3. Shell of the box 4. Detail A 5. Detail B 6 Photo-

electric tube 7. laser Tube 8. Light Aperture 9, A Two-hole Light Barrier 10.

Microscope .11. Rays Scattered Back 12. Light Rays Entering the Flow Field to be

Mpasuresl 13, 7ectrilc~.l Controlled Centact Ortical Emmision Gate 14. lens, L1

15. CoRn'Thy Db> efractive Divider lens 16, Perforated lane Mirror 17. Ins

Set, L2  1C. Rctn"--n2ar 1-ciGh-s1haped Area Being Measmred 19. Reflected. Optical

Interference from the Back 'round

averaged time frlo speed, Gi. If one rotates the double refraction divider lens and

adjusts the plane of thp "liht ap-'rtures"so that it is -a-rnlel to the direction

of. flow, T, thens the "liCht apertures" are perpendicular to a. If one wishes to

measure a two-element flow field, one can take into consideration the averaged time

flow sn-ed veptc=, 7, in the direct" n of the additicnal coordinate and tu=m the

azniruth of the "lht apert -ies" 90o However, this method is -mable to measur-

the flow speed, w, along the axis, z, of the light rays coming in.

See 3 Measuring Turbulence Strength

As far as turbulent air flow is concerned, because of the fact that the size

and direction of an instantaneous flow speed, u, pulsate over time, it is necessary

to surround a point which is to be measured and, at first, simply measure large

amounts of data; only after this is done is it poscible determine the statistical
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average flow speed, '; and the pulsating flow speed, up that is to say, u = V 16

the root-meen-square pulsation flow speed = * . . In order to utilize mathe-

matical and statistical methods for the analysis of turbulence flow pulsations, the

best procedure is to take the azi uth . angle, j I , of the plane of the "light aper-

tures" and change it so as to go around the axis of the light rays, z, in 8 :. 10

"stops"; during each of the stops, the strength of the scattered rays should be

eas .. e ab. ot i,0'0 tines. Corcerning the 8SjO0 - 10,0C3 ieces of pnlstiar

-1 4- ..... .- y,_ -s .*Pc-ible to use t ".'-tirle -ti sc.rnnr e-ec

r--" o'-17i :!zconc" t0 i_n-ce the 4 tr-Ibuttin ct'c 'or the "rob--bi-i

e- 7' cf 'otoelectric signals. The hoizont;i'_, coor-ninate in -ig 5.2 shovs 9,±e

tine, .Z , recuired for na--ticles to go through the two "light apnmtures"; the

'-rtio1 :rZnc I' thc rzrohablli tty 1= 1-:-, 4,1 "or eae C! the th

-hotolectric p'JIsc ci-alz. Different values of aziMuth ernlc, , , all h~vc

different dattm lines; however, when measnarng each of the v-.lues of a, the nwnber

of ar--tieles cntering intc the arep being measured is always the same.
'..!hcn an avce_..Cd time flow sreed, u", coincides with ,s. = 00, the light scattered

fron pa_-ticles as they flow down the math of the flow and from the two "lis t

ape-tur-esis at its brightest; at such times, the probability density, of photo-

electric pulse sinals is also at its lar~gst. After the azimuth anglej a , is in-

o ro-" -. thz oreth of the liCht scattered bac: at the two "light ape_-tures" is

quickl!:. diirished, and the probabili-j density, . , of photoelectric pulse signals
_.0 r-2iwe_.. A. er 1 1 5° 0 ten, signals almost disar ear. If one chanues a

bac- ir .the onnosite direction, he gets similar re.su2ts. The pf-k of the dist bu-

tiont cu_-e cf the probaility density,.#, represents the instantaneous flow sped,

u. 7no v'.i-t- f the curve at the base line represents the maximum amplitude range

of flow speed pulsation. It can be seen that the probability density, #', of rhcto-

elect-ic pulsation signals from rnys scattered by rerticles is a function of the

aoi~t o~ are Itd tP times s , and it closely =esem" 2cs the cu-v so

SdIstrivtion. If one holds 4a constant, then,

= the mnthentical expectation, and .2 = the variemce. ly using mathematical and

stistical Mrntho-Is of ana!ysis on the distrilbutirn cirrve of rrobabiiity dens.ities,

it is possible to figure out the direction and manritudq__of_1he averaged time flow

speed, St as well as the turbulence flow strength, , both parallel or

perpendicular to u is the largest flow speed along the center line of the
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JE3.2 ;jZ

?jig 3.2

, -he Distrbiton Curve of Probability Densities for Different Values of a

Y notoelent_'trc Pulse Signal Probability Density 3. Time

rcu~ '. c the density of the tracer narticles which are added to the air

flo:, it re7'lres fron 3 4 seconds to do 8C'OM -- 101OOC) sample meas-urements which

'ircu p9 t" tine ne,'6n t"c contruct the distribution curve for the probability den-

itieti i"n'c. '-, nccu~e of this, when making measurements, it is required that

- -... nt ed in the air flow; only in this wa-y can reliable

the - i . . -:kv5 -:C flow zpeed d * r- 1- +tJn - zn -t e rYtn-

( lar tro. a: vc_ a!z t .e rs, lri tur ce ,l ::, strenLth. _.'hc hcri:cn .tl

...... 't' ee~tsthe r-t-c cf cross c " rren. t de t h, y H, 1: = the i-vith of
-he trourh. ?ne orizin point, 0, is th sur2 anc of the wall. The depth ri so is

1 on .... .tr ne c' the trou&. LfT one us- mea-rement! resulting from

the "double bundle nara-_2.el laser" method end the use of a "hot wire wind speed

meter" and na7:es a comparison of them, there are almost no areas of disagreement.
The same thinC i. found if one cormares the Reynolds numbers of'the flow fieles.

Th'i+n - , *the "-lectrical cCntrol scorrct O+t'c.2 eMi5.5ion CJ-e" ""s"- 'd
2 1 ..... .."a,. t o C!(--, , C... ... e

in. 'rt cf the laser tube - or Pockel's cell, es 2t is clled - is instlle.

* there for the puar-pose of timing and localizing the exposures which are used to inves-

tigat the flo, field in the troughs of the turning blades; it can alc be used to

investigate two-element spiral combustion flow fields. It is possible to install

circuit breakers 6n a turbine wheel in order to indicate the position of the blades

cr to install "heat sensitive rosistances" on key components of spiral flow cmbustion
chambers. 'hen there is no external electric field, "light gate crystal bodies"

interupt the laser source. When the timing and location circuit breaker on the tur-

bine wheel or the "h-at sensitive resistanoes" in a spiral combustion chamber Send
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out a signal, triggering the light gate, there is immediately released a large,
strong bundle of pulse laser light, which illuminates the troughs of tie blades or a

certain point in the spiral flames, An electrically trigered light gate (a 3.o Ke-

er box) is linked to the shutter of a high speed camera. The exposure time can be

as short as 10Psec. The area on which the illumination is concentrated in very

small, and the ixoosure time is short; therefore, what is actually illuminated is

-renost ar Lnstmtaneously stable flow form.

:r~i'~1~cS Zn- !ae :ri~ uener , c~~'r~fr1

rifcr-" f !_- l~nt havc different :ave!enih, -. iiff'rent fre%-;

aen , ieaser :,nt cin l ight that is almost zf onf .avel th, one f_.cue-c,
;n one ez lcr, "'zr e- '.- -* --. ,..-,..-- ... .. ....... .

C vC!- m 1c F1

am-.s.. = em " r .: .. P-r..e--.ha, ccc'r lis4-h.

is t.-.= C '- 7T-

n- he, is -o /. ,-, n-.. :f-±), li., : "/.,.

/ .. -. cal led

n-'-'a tiona-" laser7 tobc shc- out a-

into t wo bunisl.s by t P I 4-&.tivi~inea s. ,'a.er this4e, has ho-eni

the0 e bales are focused by lenses and sot onto the tr cer T-icles, F in Che tuo-

,lener.. -fl.o',, field (Fi.- 5,£) -e d i re ti on o f the !7 .cn, in co r.in.c 1!i /n t, s.i

i.r. o tere f., fr o the n articles, Pt is *-!:red b," i vee or, A, •

-h fo~C, 1 c at ofe' e no rn'e) 1h.4eo er'tn ~., 1C~

,,leer frq c feld (Pigco Tih and the wavelenC' of the incomin ligh i

S -hn- fre 'u-mcy of the scatte-e3 li-ht =-.,s, and the wave]en-th cf the scattered
!i .± =.,.. f,;. - C, ..

* n--c.-Liue cf the Dor-ler e'"fect, it is ar thcr-. the v--- nf the i r.ominC li.t

leave a point, F, witlh a relativ; peed c - A..,- c - 1, cos V B, the same token
it is as though the scattered waves of light leave a pcint, P, at a relative speed

of c - a, c -M.; cosb.

Therefore, the Dow-ler effect relative freauncy

. - ... . ._



is 31,4 .'M*6 XAA

Fig 3.4
1 o o~u Vector. ef )')ubae Sheaf laser ig-t 2. 2wo-element 71o:' l:. I, 2-r-

co-t i '. 3tcattered Light z. Axis of Light

'a 1--'C A, (3.4)
*a, I, c - •,

-The ca- l~t ie- of the inst rnent-tion are as follows: range of ocssiile speed

measurc!en!'OI'./ " 5r'/v' - 3 ,/s; uer freery cf f....id . u i ,-Z

Ti- '' _? .... - . . - E "' sir laticn Cf volt'.ge outut is proy-

ortit-.1 to flow Poeed, a; accuracy i, in the range of + 15.
-be 3 r ler f rr-uene deviatien

ID fr~ -' hi (3-5-

If one subst-.'ttes euation (3.4) int equation (3.5), one can obt-.in

f. (3.6)

As far as the incoming waves of light are concerned, the propagticn frequency in

a vacuum as well as in a physical medium does not change; only the wavelength and

* the speed change; therefore

/, l+ a , C (3-7)

Because of the fact that, if one compares the flow speed, 0 , which is being measured, '

to the speed of lightq c 3x105(km/s), it is possible to ignoN the quantity, '/at
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Fig 3.5
1, Schematic Dia&ram for an Instrumn~t for Neasuri-ig Flow Speed Through the Use

of laser Light Don-ler Doubie bundle Focusine 2. Helium~ and Nean 3. laser Tube

*Otical Elemnent for the Separation and Focuasing of bundles 5. Tw.o- elemet-.

71c: rield 6. Phoitoelectric NztlipZTvc 7. Axic of Lis~ht S. Preaxn-lific-

at~ 'Z~ C. "'d lel Amifie ii Lmrter 12. Frecuency Monitory im

.<-~'t~,LiitrPhase 13. Cr'P7UeicY S-neezrar Analysis 14. Frequency Ouit-

I.-i o.r -'-~ tn 16. D)ror 1. P-n Iuer 17 Gate 18. R Integrap~

i,,qrP:,c Rpc~ing - 23. Fr-e-,uecy Trckinr De,,ice

on the bazi wi'vh~ h, equation (.)can be ~ipii~ to

1)cuetvie 4 An- -- f-ctior of sir, 'n Q 1 t i- is pos dble to Se, r 0 'i -1

t'm.t 4 + 8 jr, 6 40 - 8* sing- trigoometric identtieso equation(, )tn
brcomnes

2D s 2i. (4' + 6) i___
2 2 J

2- [Hz] (39)
A, 2

*is the "iscattering angle" which taRkers for -s b-Ase 'line the direction of the inco-

mig lilpht and is deterineI by th- dtesi~r of the light neath of the instrument used.

65

owed -



The laser wavelen"th, : =, 6,328 A = 6,328-1010 m, Therefore, it is only necessary

to use the instrument in Fig 3.5 to measure the Doppler frequency variatian, fi, " of

a point, P, that is to say that it is possible to figuire the local flow speed, W, on

the basis of equation (3.9). If one changes the position of-the focal point, P, of
the double bundle laser, then, it is possible to shed some light on the flow speed

distribution* In order to increase thedegree of sensitivity, select for use a
0scattering ancle cc.< ? .: = 90 "

2

-. ,s- lczcr 1hoto=,-hy' of ~t. r ce B3Yi STrotr

( ) Integrated information Photographic N ?Fatives from Double Pulse Laser

r~~''~of "'2ov P',IOrS (Fic 3.")
Th r--.- "IIse aser er!Uirer t, l27, has a ""I P.Ajust ent switch" ( it s also

."os_._, to use ar acetone and chioronhyll Kerr bcx a- a substitute fcr th--is.) Th.s

sviteh is similar tT the "eleetriP ,21 -  - + -e" *' r v
section. The purpose of this is to alloi: electroia~etic waves v'ihi the .by rod to

-esonate, anplify and store energ, which, when it has rached a sficienty hid.

level, can trig -er the Q switch, instantaneously shooting out a large, strong pulse
of laser Iitt.% -Tne pulse width is ap-rocimatcl' 20 millimieroseco.ds (10"0see), and

the ene- of the pulse is gre~ter tha 400 millijoules. Pulses with th~is kind of

strength are capable of "freezing" transient phenomena, suppressing the effects of
3i~ht r-adiated b" flamnes and makinG ' h,o'o-renhs "o~ihle.

Th0 1uirnose of using the "light filter form selection device", F?, is to fil-

ter out the "h'[i-" frec'uencies Vof the oscillating lasez liCht and to o nly allow

electromagietic oscillatine single form waves with wavelengths ,i 6OZ L A- to pass

through. In this way, it is possible to guarntee that the two sheaves of laser

light which are semarated by the light separation plates, BS, are still of
i o: e ,ireu:*c'. The first bundle is the illurinatin li'nt, i t -r. e s thrc'jh

the lens, LIf e 'randir.h the cross section of the light bundle;Y:, ani '1 reflect the

light _ rys so that they b come parallel; after they illuminate the flane 'lov field,

TS, t hey are r=rojectel onto the integrated information photogranhic negaive, HP.

The second bundle is the refe-ence light, I,,; this pas,es through 11,9 M, and L2 and
is "rojectod ontc the inte-r-t-d information photo-grr,.hic nem.tive, HF. Mhe two laser

bundles, 11 end 1.0 come in contact and i-tersect each other in front of HP, forming
the "light wave interference area", SPI this a_-P is projected onto the surface of

HP and forms a series of lijt and dark interference streaks.
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'Fig 3.6
1., Pulse Laser Photography Flame Flow Field Integrated Informtion Neative .,

Plane Reflection lemses 3. Concave Transparcnt lenses 4. Integrated Infoznation
m er "hc !:e-.tivc 5. Pulse laser 6. Farbolic !nz 7., and

Referenc Tight Bundles S. Thite -- t F_tnr Yc-" SeFec-or..- etnf,-e4t I :j_

fiused Reflection .Screen 10. Double Light Bundle Includee Anlc 11. 'ranrlucent

~~-tr -- r!tor 1'. 71,e T,"nsu-n? an~Th'e Tlow. Fie). '3. L~rtae n'~

-Ac~on t to the azimuth cf HP, nove-,ertP forear= .-n bac r s w-l Os flne

adjustments can be accomplished by tuxninc lens, I2; in order to facilitate adjus-

tment, the "light course" of the rf*-rence ligt , t ' foo BS to HP does not have a

-_ ... .... .... the .1 . no -'r '" cr " 'G= reth" cp the -

_..inat.or l*._t, 11; the basic d-ff'r in li-ht 7aths, ,-_ 11) is-o:-....with:n a few centimeters; the included angle between 1 ano, 1,, 2&9 is " k_. ,, C

small, as much as it is posclble to do so ('2a58°); moreover, the normal line EY

divides the angle 28 equally. In this way, the interference streaks being ,ut out

arp rel'tively clearer, and the secretion interval bhtween streaks, s, is relativel,

wide.

(2) Measurement Procedure

The first li&gt eposure t-iggered from svitch Q. There are no flames in the

- flow field (in a two-dimensional flow field, there is no air flow whether there is

a pattern to the flow field or not). Distributions of density and temperature are
67
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basic conditions which cannot be interfered with, Conceriing the illumination and

reference light sheaves, because of the fact that the basic difference between the

paths of the two lights (11-12) does exist, there are recorded on the integrated

information photographic regative a set of "background interference streaks"; the

interval between these streaks or lines = s.

The second light exposure triggered by s.itch Q. There are flames in the

field of view ( or boundary layer separationp shock waves, expansion waves, etc),

and these interfer with the flow field. Because the density distribution changes,

the distribution of the index of refraction, n, within the flow field also changes.

The illrinatizon light bundle,It, is influenced by the index of refraction of the

new distributions, and this influence is exerted in oppgosition to the new difference

in light raths (22-21) of the reference licht bundle,I 0 . Due to this fact, "there

is nroduced a set of "defornation interference streaks" which overlap on top of

the "backcround interference stretks." Alone ±he x or y cocrinates, the defo-rma-

ticn streaks of certain specific points have a positional displacement, & s, as

comrared to the "ac'.proind streaks, .s. is necary for sg only utnder such

conditions re ther. 7noduce , comnr.ete -ni c14_%r i-t'rference streak spectra. The

time I ,: - e - conzrl the two e, : exposure, " 2 seconds.
0- t i: ~ t'% info_-tion -hoto r-rhic nec rtive, the positional displace-

ment, as. 4.ch co"--cnas to a designated _ointOis equal to N *a; the cor-

res-ondirE ;: rtO in th, 2low field is irt,'rfse-red vith by the corresponding changes,

AP i2, the -Yus lo ' ! 7. " ... u "a%]ue, .st arises at the beginning and

the end o-f tl-e '_-ne nt At. '-.en tb., --. o Ur-;ht fnrD'sUres; the cv- rlap.-

ing streaks ",,hich result a-r, c!ll the "time ?ifferqrtial for inte.rprter Lnfor-

mation displays." Because As ip related to chaer- in s, even if the bacokjrot.d

interference streaks have b'.sicr ily distorted forms, it does not make an dLffer-nce.

This simply lowers the requirenents for the optical components and sim-li-fies the

roe .rerents.

(3) P-_ricirles of UCght 'ave If-c

Ass.ning that, after rectification, the laser light is a pire Ilane polarined
0

light with a wavelength oft = 4913 A, then, concerning the propa£ation of these

light rays, it is possible to write simple wave motion equations:

'he point d2isplacement of the measurement li&t sheaf
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The point displacement of the reference light bundle

- ~ ~ ~ r 2ww~I ')- Eu ! *+I) (3.11)a-Y,, %ME3v (,f + 1j), (~a

E 1 E2 = the amplitude and the frequency respectively

C 2 V 4 original phase

A and' a angle

The i=tecrted information photogT .hic negative, 1-I, receives the total liCht

'=rth r the .;': - t w~nr-r v - r the tvc bundles, I c./.. ), "...

_ = 'eet -ro-ortion '.,ith the r-ormbined amrnitudes of the lirht -vav cf thr. twc

bundles, R. Using the addition of vectors method:

R1 - Elf + Ea + 2EEcos(4m - 4) (3.12)

that the a.plitidez of the iluminat+ion bundle and the reference bundle are

bo.th e'ual so that 2 = 2= E, then, the total light strength1 2
I = R'- 2E'[ + Cs(3, - 0,)]

- 4Vcw 11434E'co4

-he relativ- phase differential of the t..io bundles

(3.14)

2w
The relationship, k = is called the "w-ive number", that is to -say, ir every

x cr alone- a: :is of the i -,t t'r ar this e-tair runber of wavesj :

'uatity Plso represets the freue' oy, I. It ir worthwhile to remenber and bear

in rind thL sic.ificance anA me-ning of equ.etic. (3.14), i.e. "Whien two bundles of
liht uith the same fre ujcics irtersect, the rhase differential of their mutual

interference is equal to the wave number times the light path differential^".-F-om

equatlcr (3.13), it can be semn thet the strength of the total light, I, must dep-

n orthi "phase shift d-f erential" * * Fig 3.7 (a) shows the combined amplitude

vector, R, of two bundles of light waves as well as the correspcnding phase differ-

ential, i4; (b) shows the total light strength, I, and how it varies with changes in

the phase shift,'46. When the phase differential, 4'= 0, 2,w' 4 w, ... , 2Nr' I = 4

E2, and one sees appearing patterns of bright stripes. When the phase differential,

0 = 's" 5 sr .... , (21N + i)1- ' , and I = 0, then, one sees dark stripes appear-

ing. 'hen N = O, 1, 2, 3, .... and so on in whole numbers, these are called "inter-

ference stages" or an "interference series." From the spectral plate, BS, to Hp,

the quantity (12-11) is different for different points; - is also different; due
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to this fact, E shows the appearemcr of light and dark stripes.

Sec 6 Analysis of Interference Band Spectra and the Figuring of Temperature

he integrated infomatibn photographic negative, HP, which is taken of com-
busticn flow fields during two-pulse laser photography, records complete informaticn
on the liCht path differentials and light strength distributions within the field of
vr; "hoth whr -! . a-e flar.eF! .rert or8 "'hp-e ar-- -n-. ie. e ter t.e develo-

~~- ~r~ r~~--~± ne >ve- s to -' t p -tu t-:c -o-itions vwhjch
co-re-~rnd to th se which e :iste . the time cf the original photograph; if one

uses a continuous laser lifht (such at heliun and neon at 6328 A) and uses a lens

~---j' c the iij'-r:t , ntc a light sensitive rtoz c hic ner-*ive or htograrhic
-.:-., one finds a'-ring again the original interference situati-.-.; orly Ln this

'a-: ir it nosoible to obt-ir the interference stripe spectra in Pig :.8,
A-zc nLic th t cne -. rc,' .. ows the background tcnper:ztv.rc, T, in the fild .f

visicr. during the first light exposure, and, assuming ore also - .-nows the
pessureq p , the density, P, and the index of refraction, n, end, fu_-ther assuming
that one alre-dy '(iows that the thickness of the flames in direction z is e = 20 (am),

then, on the basis ofph:-sical optics:
-, - 

1  constant" -= K, s-1"8,
P ~i f

t.hen, K (3.15)

~ ~ r~r "*-'-ocio~ An a an z~a~' versity, A P,
a--e releld in tha !c. owing way.

A~u= - 8o- 8 = KAp (3.16)

Czn _ . i-Z b , tro- se ]i+.~ exnosure of a gCIven point Oeorrercndilr to the flc,
... . .t -- _ a t c' L-_ ht a -" P"a r -ti erron eous

b r, :_-- T, (I v-, i ie. q

N -- " A fA - - - - , (3.1)

09 1:- . . (3.17)

therefore

If one assumes that, throu. the entir- process of conbustiong the flow field nres-
su-e, P , remai's a constant, then, according to the C.' state equation, # = PgRT,

it should be true that

7U
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ism,

r, ., :. L -(3.19)

P

leTneritur- of the illumination noint
T 1

_ c1 --c-.m. temr!n 'ture 'Then th47,e is1

no conr-astion

-AsD

W3.8 J~ft*JPfdtW

Fi 7 3JV
1. * Tterfereic StrIne ST'ectra of Com'bustion Flow Field' f is an ever o=' Un-

form background st-re natteni

N -(3MO)

'-e, airad-y I-nov thst mzirer st nii'rd temperature and nressu~e conditions (2 37K,
Pq kecin)the refractive inde-r of air, n5 = 1.f0C0r3; 1.3 eefo2'e,6 3 x 10~

Ifone assumnes that the backcground ternp,?=aturet To = 2")3(1:)t then, O=SD fue tc

the fact that 8 and T have a relationshin with each other that is defined by a hyper-

*bolic cuzre, one can subctitute -, , 273 - 2.8 X 10-4
293

In Fig 3.8, the illuminated point O~and the backgrounmd base point. 0 (X0 9 YO)

are deformed alcng; the x axis, and the erroneous Values for the background strips
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AS- N -6, .1 - 69431 -0.6943 X 10-3 [uM].
$

N 6 X 0.6943 X 10-4 , 4.166 - 0.744
age 2.8 X 10- 4 X 20 5.6

By substitution in equation (3.20), one can figure out the temperature of the ilum-

inated toint9

T, L9- , 1144 [K]
1- 0.744 0.256

Using the set of conditions in which different values of y m a ccnstant vlue of the

x coordinate, one can figur out enough temnperatures to make it Possible to Trecisely

dete-rmine the temie-entw-he -i~tribut.ion of the combustion flow field.

'T.en one car-ie. o'i. the actual anal:rsis jrvolvedf it is possible to use a nIcro-

densitompter to clear un the spectrai n-attens cf the inte-ference and substitute
these intc :rpzual :uccive--'v roina. .. At the present time, the use of

this itrurI stil only rive.; one t .h c ..... t to measure the density and ternT-

erature dis-r: rnwtions of two dimensional flow Ciels. It is also possible to make

.-ltrK-.. cf svnl cross scctions an'! then -,it them together tn forpr-

a thr-i rir. r c'hic diaj-'.n.
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Charter 4 Basic Eouations of Flow Fields

Sec 1 Characteristics and Concepts of Flow Fields

The space filled by a flowing body or fluid is called a flow field. After

selecting the coordinate system to be used, one already knows that the intake of

tho field and the boundnr_-, conditions do not vary with time, and the peculiar

...... st ... fw $'L is that flow seed presssrressure, density

( c cTnrert-tio-) ?n t .. all have fixee -atterns of iistnibut-r within

the scc-e of the flo field and their values do not vary with time; these distribul-

tions are also called speed fields, pressure fields, density (or concentr -tion)

fields, an-. teM, r-tu-e f-el.z. - the perfortiance of tests on whole combus-

tion chnn des-igns or -arts of thcse designs, ":hrther it is with i&.ition or

rl" in the fc= of an air flow test, by the use of tiny trans,_itters or laser light

.± t-c.Ii_' uoc ccnnec!ted to mutirn path data collection and nrocesznC machines

-- .... -:t a r--it_ r or an oHstical dinlay, It is Tossible to measure the

. .. "-. % " opeed, density, pres.sue and temperature. This

-- .. ce v--lue for the work of determining ard improving the

S.. 'a"r- ' of combustion chambe-s. On the basis of a theoretical

* ~ --J- -', .,r ) ch-- .c -,

f'rds car ntr "_t - a rela±ionshi of mtu l corcbcration with the remults of

~r'~ ~-~ 5 :t -PC _'-cMS an-, sllpnc - of co'wsuticn -h-imbe~s, an ' thic c,:n fo rn

-a-is r-,t -.rtuctien of rev shanes an ±es of combustion 0-.inbers.

Thds mkor it nossible to save e-.inment, manpower, -esources and time as comoared

t: "d !PnZic ecu~.c-, hi_-h-altitude fli.±t nirmlati-n, and combustion chamber

component test" procedures.

Flow fields analysed from the perspective of fluid mechanics are Partial

astrctons of re-l flow fields. For example, .hen one is analyinC the flow field

of a diffuser, one uses a value of u = 0.00 U as the bo-undary line of flow which
is used to divide the main flow field from the boundary layer flow field. In the

case of a jet exhaust, it is possible to searrate the core flow field, which has
an even flow speed, from boundary layer flow fields, which a-e chiracterized by

turbulent shear forces. In such main flws or core flows is possible for one
to ignore viscosity and only consider compressibility, and such flow fields are

- call aviscous, avortical or potential flow fields. In boumdary layers, if it

is nossible to lanore compressibility and only consider viscosity, then, this

type of flow field is called an incompressible flow field.

T3
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Many designs of combustion chamber are axially symmetrical. In the flame tubes

of single tube and cannular types of combustion chambers, the mid-lines of these

tubes can be taken to be the axes of symmetry of the flow fields in the flame tubes.

The axis of symmetry of ring cavity combustion chambers is the centerline of the

jet engine. if the air flow parameters are all the same at equal distances out

from the axe- of symmetzy, that is aromd the circumference of a circle with the

a-is of r:±m-rty as its center ane the O. stonce i_ question as the r-dius, then,
SS -k -. - 4 Oi r- 1,.-

-r Ui- i.....I az a 'io- ri-c- - o- .ie A vertical c-oss sectir -' in t-,U'=

h a-diu and P--is of symmetry of the f low fields _vTlvsid is called the rea.dian

plane. Each meridian vlane in a flow field structhure is sirilar. Therefore" axi-

S .~m ' thr--irnensional flow fields can be simplified into two-dimensional

flov fields for purposes of handling. Tvm if a flow field is not arisymmetric, it
is rnrl- necessary for' the mechanical stuacture to be axisymmetric in odr for it

to be possible to take the flow field -nd "c ut It un" into sevcral- planes of rot-

ato ar P.nd m-ridian p2a.es, ' c 2 can be analyse6 as o- i sensional fln.w fields, and

hen - a oether into an image of a three-dimensiona.! flow -ieId. Zrhe

blape cascade in the pname of tho bi wheel mechanism uses precisely these planes

of rot--tion to cut un -_ I " Z.iC 7- hr u7 t, form plane flow fields,

The eddy curent araratus of co,-)mti:n ohn-.brs hnes s-iral flow " b ->r , 'w -hese

can also be cut up to form a plane blade cascade, To talk for a rone'-tt Pbout th-

fo-,,a- sct on of flare ntubes, th, rini-sh pod spiral jet which comes fror t!is' eddy

curen t an-ar-.tus, car be thouht of as a three-_imensional spiral f !o. flsld in which

e vcr+.ey is add- to a jet. ach rAs distribution hole puts out one jet. The ocld

air iets that nt-or throug the holes w,!:here the !ases from the main combustion and
cooling areas mix together are bloin away and bent hnd broken up by the hot gases

from the m-in aiz flow within the flame tubes; this creates a three-dimensional

'nv field where the hot ind cole air flows mix together.
I.ovin!- on to a mo-e gen-ralized discusnion of combustion chambers, if there is

a vcrtica turbulence flow present in a combustion chamber, then, one cannot ignore

viscosity any longer; if the-e are changes in density, then, one can no longer ig-

nore comressibility; if there is a temr-'rature gradient, then, one can no longer

ignore hept transfer; if t1here is combustion, then, one cannot ignore chqnges in

the constitution of the gases involved. Even if there is no combustion, a cold

air flow test in the interior of a conbustion chamber creates a three-dimensional,

viscous, compressible flow field. In order to simplify calculations, every effort

should be made, on the basis of the structural peculiarities of the combustion
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chamber involved, to divide up the three-dimensional flow field into several local-

ized, two-dimensional flow fields. Speaking of combustion in general, the larger-

the number of types of gases it mixes together, the more complicated are the analy-

tical computations associated with it.

Sec 2 'Flow Field Gradients

,m .or tiF a .-nM - a sCia i . 1 th "'! fie : a.-c -e wc.h *ar

.ter tur',j T, \'"entr n, c (dens-t-, P '7ure, p, "nerr_,, 7-t

a&r sc on. -he space in which non- irectional -arme'eIr are distritvted i callee

h "  ak-, a dlirectional cm V", aelrr-

ation, a momer", tuzr, "mV, and Torce, F', etc, -he 5nacc in which dir-cticnnal ra.--
t --"a' - r ':,-' 'i oC>T.i a[ Vc ... .. I C.------------------

cnanber is n- .nl:..... bu.. r. v.t.r . 7- ;t ifr

n.- ±.n'-r s- e cf"'..a c.-t-"li-& , t:- ., '-., - e' .. ~ -*..~ - z. ~~

v.'hich the contour liner a- : 7 7- 7....-- ------------

the eradient is lar.c, -:.:>:.:-.'7--" ... --. . -- -'

of lov, ter r-ature, nz " ts'o: hi-t relf sr.q) -i

~-os-ent--tic- :.3e'_rce, Pn-I j diffusf- r *s -e--c f s ..sr.,s)

te- c !.:fron ar-a~~ 'iez .. ~.c -n~ I .r wihte :-ire

'.. -. d .... l.o,: _-7 r ete. pV (!-:/r s); 11 the -rtities

mntioned here a-e vector nuantities. I a flow field under examination, it is pos-
!i "to -'raw out a c-rtcur m-- for total pressurc, t.- mer-t're, concentration,

i-s 4,'itjin the flow "jel' in -,)estion. *..'en these cur'es are -rejectee onto a

coorlinate nlane, they become nothing more thv.n isothermal lines, lines of ecual

-rcss':rep etc. , etc.

In the case of a stabl- flow field, it is rocsible tC eet the distr-bution fun-

ct~i for tct-l rressure, ovepz-.l teI Pe -'tre, ene concentr-tion withdin the space of

the -lo field, Ard these functions are called Potential fncti-nstO-I (xy,z).

_ = a constant, a'.d it is c:lled the eyual potential srurface. Conceing" the pot-

4 ential function, 4 , its rate of change along a normal line, n, or its directional
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derivative is called the "gradient" of 4'0-, grad j

ax 8 -0a i.LO+ L +-A "a ........ . '(4.1)

i, j, and k are respectively the unit vectors for the positive lengths along x,

y, and z. The inverted triangle

and it is the vector differential of the orthagonal coordinate system or the operator

of the directional derivative. The symbol, q' in a d of itself, is a vec+r; there-

fore, the C-r dienti 71 is a vector, which has three components, one each along t.he

X, y, and 7 axes. By using the conce-Pt of the gr'Aient, it is possible to derive

several foniulae reflecting basic principles. For example, in the investigatim cf
he h~~t flo: -chat travels outw'a-d trough the equipotential zurface as veli as te

investiation of the nuestion of the diffusion densioty flovw of physical subszances,

etc. :

If me as-rines that 4 = T, then, the heat flow

. ... I .Q . .2a )

2 is the rate of thermal conductince (kcal/rn.' s K E). The heat flowq, nd the ter-

-n-tur c-- innt a-, re]!ted quartities, The nege-ive Pi-n e'rresses the transfer of

h-st from areas of high temPer-turp to areas of low temper-tu=e as well as the _Pver-

sad directinn of the Cradient. If one makes 4 = c, the diffused density flow

(4.3)
D is the diffussi=n cofficient (m/s), and c is the concentr-tian (kG/m"). *"e dif-

fu ion drsity flaw, f, and the conc-tration g-dient are related quatities, and

they are related by the Fei Ke enuatim just as the heat flow and the tempere-ture

g-radi-ert were -re>te 3 b: the Fu Li Ye equations. The negntive sii ex.presses the

mutual onrosition of the directimn of diffusim nd the dir-ction of the gradient.

If one ncts 0- to the speed value, then, the density flow

(0* + k4/, k a]

(4.4)
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Th -rdient c-f the speed values, p equals the flow speed vector, ,adth i-

ections of V ancO the direction of the Cradient are op~osite.

See 3 Pi'actice in Nul~tivlication of Vector Quartities

(1) Surrosing that the included angle between two vectors, a and bp is R~ P so

t.t , 0 <6 < . T2hen, the scalar nroduct of a inT 't (the -cint rroduct) je a
- - C. ~ 6

= 90,a b -0; 6 -0', ab ak. (4.5)

Conco-in r the ma-5.tudev- of idertitiec-

(j n- "v.-ctor rro~uct of tw~o vectuors,- O and b t (al-c called thr c=:7: -rc-

au-t) 4& xa b =c -hich is a thi-- na-Pnitude, -c n,?--endi(-u?arz to t-e n2an- c' ami

b ife R 4- the included anrlep between (i. and .16, so that 0<04r
.7.1 lire --f C S -- -a x s'. ine (4.7) =the srface

aro;? of a ouadralater-l.
Th' jrct" cr of c is P~ i~~ h useo a Te ca)ed te r&t- ?- cn-

- nk oes t m~& of rves o~ft hand and raps his thumib ad hi

c -  t-h'v of the aef-~ haPnd. '-oint in the direction of c, and that the other
at an anrle.r ~ an.. . -.

Or, on P r-cvla tliinlk of it aF7 looc-inC ur t),!p v, rtor, C, as though it we-r ar ar-cv,';

L0 t-urns a":C,.nd - -r- n-vin a so'1ro dc14 recir P-1 P- an -7V
<, d- t vth- lb r,-,-0 in~ t: tf c, 7-1 if the ss r nl, -

ILand br os in omrez, thlen, the direction of the third vector, c-9 is tK,,s.a

arc~'-1, ~tis.

b x a a Ib a sin (-6) -- c -(x b). (4.8)

If we -All Pb.out the thr-es "uniit vcectors" i, j, &n6 kt for a moment, then, we come ur

sx -jx j-kx k-0; (4.9)

i j- , ix X & i, k X i -i j;IX i --
kxi--s iXk--,. (4.10)
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() "Th e dot cross r-oduct " of three vectors a (bX ce) is the volwne of an

eouilaten-al parllelipiped, a, b, C . Since (b x ) represents the lower surface

area, and a represents the slope height. The included angle between a and (b x 1)

=8. a" (bxC)- n cO• jbXCI , and within this eypression alcosO--h

is ar. altitude -nerensicular to the base surface area; if, in equation (4.11) there

are the th:ree vectors a= ia1 + j4 + Aa,,"Ib , ib, + ib3 + b,, - icXJ, k + kCs

n, it is nossible to use determinants to express the dot cross products of the three

a,02 a31

S.(b×c)- b, b b, (4.12)

1C , C1.r31

Ji:c to T' t '"'-:at th)e "dot r-'o7ucts" of the threp vectors rerresent vclumes, if

a - (b x c) = 0, th-n, the volume equals 0, a-nd the three vectors, A, b, and c ,

--: vF -ht. - sane -I-Ka'le. The -everse of this is also true.

E C"r, inuu Cros r-_oduct of Three Vectors

a X (b x.) =(a" c)b - (a -b)c (4.13)

i *< - '" cf twz vectors, b Xc -d ,is a third vector, d. which fs ner-

e is r,anu and is stil P v-"tcr.

'- C> un 'r Tuatior. and ' * " '" of Flow Fislds

!mrine t'he u-" of a *th- n -Trnsrnt f-im of -ir, which is also cF.1led a "con-

trol surf'%ce",.s , and closely adhfres to the inner 'ails oi flame tubes P- vrell as

irt-ec a.d er-hausts an . coats them (Fig 4.1). The space within the thin merbrwic,

-. cr .hr l vo.r'ie", V* -herc rr momernt-., -rer, ct, cort-

inucunly Tiassing through V from the surface, S, and flowing in and cut of thn flame

t' be. On the surf-ce, S, a designated point, P, has -umning through it the normal

' " !Line n, anA the rtnit vector, 3, along the normal line, n. ArouMd the poirt, Pthere

_re deliniated a 1ffeentiel surface, dS, ar well :s a differential volume, AV,.

If one set- te i-cuded angle between a and the flow speed vector of outward scat-
- terinc equal to ;0 at a point, P, then, V" a-VcO,8 which is perpendicular to the

* outward flow speed, dS. If one establishes that the direction along external normal

line, n is ficuroC7 to be positive, then, the mtter, momentum and energy, etc., which

- are flowing out are figiured to be positive values, and the inward flow# Va, is con-

~7b
-I =I-



sidered as having a negative sign. The volume, Q, which is diqpersed outt.rd every

second from the control surface is V- u, is the integral along the entire surface,

S, and is called "scattering magnitude":

Q-fVnd (re/s] (4.14)

The "divergence" of the speed vector field

divV-vV= Jim [ ] -- im•" ,- e-"ld &,- V I , :

±hrcf>r., t"2e ,-ve-%'r-rnce is ennel t , the volume scatered ort from th- , - src z u_-

face, S, ever- second, from each unit of control volume: the mit for h- -uar~tity

.tend- a trace anct, " t s c - '-' ... ..
t~i ror ur ,I )th-e -el-t-;onshir... .

Q - $f V ndS [V Yedl 'Is1 (4.16)

$

Fig 4.1

1. Control Volutne, V , and, Control Surface, S 2. V'alls of the flame tube

Thc c.1 .ttio alove takes V in , b~c d'uble inte. 1 alor. t-e !urf'ee, S, an" -tL'

it into th di-.ce,'VV on the ha f ., the tri le .rt .] of the vhte,

In fluid mechanics, this is Gauss's theorem.

-he divergnmce, VV, is the dot product of two vectors, and is a magnitude.

llsing equation (4.6)

iv V - VV- -+ iL + k •(iU + j, + kw)"i ax OY t-
O- + - + - I/s] (4.17)

Imagine that the micro-maspes of Cas in Fig 4.1 have a A V. value that is arT-

rrop.-iate to elastic solids; in his case, the three partial deriv 'iv-s on the right
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side of ecuation (4-.17) represent the rates of change of the "tensile strair" alcng

the x, y, and z axes or the "linear deformation rate".

"lake the symbol to represent density, pkg/m'] , density flow, pV(kg/m 2s)

or total enthalmic density pi* (kcal/m3 ), i*= (kcal/kg); with these ideas, then, it

is possible to generalize tne concept of "magnitude of divergence": i.e.

-the amoimt of matter, momentum or energy which is scattexed out from

the control surface -er second
- "V. s (4.18)

' .  ... bo' , _ -r "attc=, rr te rrtE cf - ns-

formation .-mr second
O-E dV," (4.19)

-- if one t--ez , = ;, -hon, thc matt.r . .-- (or material

rate of outvar flow)

S'pV. ,S I/ (4.20)

If, within the contro 1 I-y, - nc "o int C... :c" . s r e-.

of mass, -.jithin V . - -

necessary to resup-] -'- r CK.,C -- ' r sc:.-.-. _... .'X-:I, Z 7.

r*,i and, for n~-T--2y c' ris wc' u'se- F r c*Y )- -2 .1-

N-dv, -ndS (4.21)

4Z' P dV, - V. pVdv,,o

or f [8 , v dl.= 0 ,_:
-'2 - '- .he eluatinns acve, t neeeari" foit .... th--

•_+ : v 2_ + pv. V + V-Vp 0 (4.23)

In vstab!e, comrrosibl .f o,, field , den i- .. net:-r- of time and coordinates,
p" p(,. , 7, ,), * If we use the perfect diffe-ential method

f solution on the basis of the multi-variable functions, then,

a~t+ x+ P a. y + P (4.24)
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If one takes the instant, dt, and uses it to divide the various quantities in equation

(.),because of the fact that

dit
therefore,++ 

pA+a a

at OxA Dt y &k at

ap + 2& + A-- V+ -O- W(4.25)
a0 x &I a

Vf, 4-s the craeirt o the nurn'-:ic,-1 field, V iu + Jv +-kw, accor-iin&C to

V---t VU.p a(u++ I)(*D p) + 2p + A
Ox Dy &

+p .2-p + "Pi (4.26)

Dr ty D

APE+_ (4.27)-

c----bstit-tp thd-z e----eir into equatin (Z.23) it is ros~ible to obtain the

continuit- equation for a threz -'irensionalg un~stable, col~flow fLield:

+ +p -V -- (4.28)

If 1,'o T-1- lisp Of the vpr~enca,,VpV ,of e ,n'ation (4.17), then another fo!-. of Vf"p

a + VpV -O ~+ C+) u) + + O(L) -0 (4.-'q)

Tat ax d bz

tri -3 e o' an incom-prescible , stp-ble flow field, (apl'at) -0d

t!-- dive-r!7-nce, VV-o0. (4??)

Spc 5 Jiomertur. 71h.uaticn of -Plm Fields

If' we use enuitions (4.1e) and (4.10) fr'om a precedinE section, and ta-ke to

be enua. to~ -PV t'hen,

-the rnTe:ntax dif"Used4 -ach second from the control surf.'ce, S,

f.*V(V. - )dS tN4

-vithin the control body, Vs9 the rr-.te of trpmsforution of mornentun

peor o econd
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- #"' (:~:odv; [

-the total outside force exerted on the control body

,F - (PV) dYf + ' OVCV - )dS I[N] (4.30)

rquation (4.30) is the total outside force exerted on the control body =the total

rat- of trarsfornati-,n c-' no rtuzn of the cortro2. bodll.

nal fcrces can be felt. Fcr examplet L-avitij pg 9 c-rtri'v-!. f orce, :LT, -*

tia, ma , 's well as Pihctroma-rietic forces, etc. If' "!erO-masseF7 of fluids av

no c azrcxd cocr -n; te a::-is, 2.e.. CiO; Th- 0;~ ir nc

The for-ce of Cr-!vi tz ex'-'tpd on the contrc 1 bc-dy, Vs= Z pV, [N], (4.3 1)

(2) Szrf ace Forces. These forces include e:-ternal pull1s and pressures on the
contrc-. siinfpce, 5, as well as shear forces which rub alcnf the surface or friction.

Assume that each square meter of ga-:s has exe-rted an it a surface force = R (r./Mrj,
-he surface- for-ces e 7c-d on the control bo:!y, V~ d.j] (.2

B-a s of.11 F = pgdV, + RdV, LOY ~$~) dV,

+ pV(V. r,)dS .4.33)

,ccoz-'in, to equation (4.16) # VV. ~ Vp

- f ' I pV(V) + (VV)pV ]dV,, (4.34)

'.her ~to (4.734) is substituted into equation (A.77) it becomes

[L + pV(VV) + (Vr)pV - pg - R I T,(4.35)

If It is recce'sa-- for the inteL-ral to be equal to 0, then, it is necessa:7' fcr the

Lrtegr:7ic-1 !intion to be equal to 0; therefore,

OP + pV(vV) + (VV)pV - pg + R (N/mi] (4.36)

Referring to equation (4.27), if we take (pV) to s-zand in place of -p; then,

a~V (pV) + (VV)pV (4.37)

However,

+ V (4.38)
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If we take the relationship between equaticns (4.37) and (4.38), and substitute it

into equation (4.36), then,

p - -+ V[&+ P(VV)- p + R (4.39)

According to the continuity equation of equation (L.28), in the equation above, the

quantity in the narrntheses should be equal to zero. Therefore, we obtain the mass

density times the acceleration

d .- p1 +R [N/x'], (4.40)

The ne-fee-t e-'-l of V ve-.u- g is the acee:_r-t'on v-otr

a-, = + (Vv)Vdit d?

= locai acceleration + shift acceleration.

This is due to the f-ct that the speed d_ tribution is a funct or of time and coordi-

nates, V = V, x ) and, if, according to equation (4.24), we -se

the perfect differential method ecuation (.?6), ;hen, it is pos:ible to obtain an

equation analogous to equation (L27). 'Te-efo-e, ecuation (t.O) c-n also be wrt-

ten as the following relationship,

The force exerted on evep- cubic meter of the control body =
8V

P& -P. - + P(VV)V

pg,+ R [N/r'] g (4.41)

.Iiat are known as stable flow fieldsZ an tu.. ...V _ ........ .
- av

acce]p-iton, r.- = 0; moreover, the "s'.ir't acceler ti, n-1- ll esert.

OthenIse, the ric-ro-mas-es of r.s would not shift ncsiticns, and there would be no

flow, The shift acoe'_le-ation (V)V (iu + jv + kw) • + i j- + k
Br y -M

OV 8V .8.-(.2
ax Oy TZ

f one '-ker Pou:ticn (4.41) and 4'r.tei as three comone' ts alnf thr

.nd z axres (,-n ortha-onali coordinate Euler e'uation):
._. Ou+ a_ ,._ + '

Sec 6 "Circular Momentum" and "Vorticity" of Flow Fields

Charter 2 talked about the fact that, in boundary layers, due to the fct that

there is viscosityt, , the no-mal line y of a given point along the wall surface
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hai a sreed distribution u =f(y),, and a speed distribution gradient of (OU/8Y).

Due~ t7 this fact, in the areas between the layrers of a laminar flow there are viscous

shear force-s ,(8/)[/a

If, at a place of adhesion to the wall (&1/00) = 0, r =0; theng the flow layer
will adhere to the wall because the force acting to blast it off the wall is inadequate,

and it M-Lnot flow forwan.-d any more, so it will separate. Down stream from the point

of se-a-t:-'n, S, rases flow upst'-rearn against the currert i4n or-der to fill in the
~i~ '~~ ~ the r2zo.* 1a'-e: -- ar =r tho,-, th' 7-c" ur ontc -l-tra-'

Pr obstacle, su~den r'tinoccur-s along th;e Pd-,- anles, a-ne this :?lso
'-ro- cer rena-tion edrlies (Fie /.2 (b)). If we take two lp.-ens of air! flow:, in

in~.o~ ~rcti4on, a-d c-~ 1? e u1 a-nd u,, aond wp t~ iTt the
s-P7nJ ot the same; thcn, irnder these conditio-ns, ofp. 0 then, tVn

P.long -11h bnrnd -'h te then~ is smooth; however, if P L C, then, t---y .
anteach other, o:-chancing momn-amu. and prolucing dd layers (Fg4())

These eddie, are micro-masses of' C-s w'hich are rotatinG at Mh speed, givfing them
an angular velociAty vector, a, . Becpaise this vector can be resolved into thr-e
noonent vectors, one for eech of the co(rlrinate axses, it is rossible to wr-ite
the foll-owin-: tW -"a, + iW, , *Aocordinr" to the right hand eriral

conve.ticr, the direction tow5 rc <h- the thr-Prds cf -.-r~e : tr
si, Th Is is th an - the !ir=cctional rule for thc c:.onr r-Oduct Of t-o vectoro.

~ ~nr~. th~t r tuning ortic-Ti ras 4F- rro'e-c tEd onto the x:-y p-ane i j ~
cu c,: a case, the serjr-:tion area, (.-), the wake area, (b), and the vortical flour

Ia ye r, (c), are a:ll vortihrl floiw fieldt and all have srr3flow)"s aroimci the ans

z. h1, ciameter of the ring flow rat!7 of the nicr-o-nacsero cf ,-s is tho lcrgth of
the, circumflerence, 2r. the area of the rine, flow is AS - r. AlonC the path

of m th nC ji o ,the lenrtf, rf th'np eera arc d!' 9 0

V - I ,,'Fch -P q~r t , ,.nard irtt,7- ' r 4 els ~coa
-I 4 dlwh~h ireei'l o th itearirt''-lofLhe, cl osed. curre, L dcfined

*by the dot Product of the are 'ifferertial and the she- -r line sroeed. r2o rrovide an
exar'rle, it Is as thou& a small -,onThe- we-'e va!ing airinst Rnd rubbire a'atnst his

*corral and evr-Y second he rubbeO. a lar-rr -.nd lagrarea (/);this Is I.,hat is

* r,-rfr a'- rin vector~.

Assw' inc we al"dlmcov the angpular. velocity, -w..9 and the r-ing flow radius,

r, then, V = r w,.

Due, to this f-Apt the rinG verctor
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(b) SAIXI

E4.2 9V.Arri

r,- Sr1~ Po =mePd V" V o u s * Fl c S p a2- r - 2 ',all. S11,:f;ce P_ cn t 3 f S e-a r7 -

'0 _ -:r 7~ 1'- 1~ V4o d.Z i. Arrle Senar:,.t-Lon Snizals 9., Vomrtical

1e~~r ~. u~d=z nan.-s 7-v. -'z' Tec T±-?r- ' Cause Vrtical layers

2 wr
2om, 12/]-

,:Ic -vorticit:: or t~ C

As (4.43)

FiC 4.3 (a) shows a- spira,-l turming around the sw:is, z, as thcu&.. It were a "sci-

id" ,.with the angular vclonitr, w,. If one assures the P (,Xy) is a fixed pc -'t

selected on the sur-^ c-- Z[ id" t",e I& -'ro:- t" tvo !,-!2A -- izJc ~

out b', the lines in z%7 t N3 b) it is possible tc see t'p "-: -:y ,

Thereforeg

'Due to this fPact U -WvZv COSP W~O

'he pa-ti?'. d-z-4vative:

bv Los., 8 ,U Wit
bx by
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Fig. 4.3 spiral turning around as though it were
a solid.



1i .1 +(4.44)

If equation (4.44) were written as a sentence, it would say, " The vorticity of the

flow field, xy, *y., is equal to twice the angular velocity of rotation around axis
z, i~e. 2 .w;o*' " The .a4itude of the vorticity is nothing more tha the speed cf

S..-±ior' of th c-tic-.- rasses.
&-jner !i' S ±_. +a thr e-4i"ensional vo-tical flow fiel .IT cnr

th' = P. "z-64ial vector" rut out by a point source, 0. If the nEg-tlb of X' 'loes
..:- ch rgc ' only the directional anle,"e, (longiitudinal) Fnd the declinatin
ar.3_e, *,, (latitudin al) change, then, the end point of the "rcdia_ v... ,", F,
+r-c out. i. spare, a sphericcaj sur2-ce, If the length of tar wcl2 as its dire-

ctior both chsn7e, then, point, ., traces out, in space, a cuzred surface, S (Fig
.'4). One .cn take crozs section of the curved surface, S, and the closed
curvo, L. The p:ojentlo. of the flay speed vector, .V, of a cert- 4 nnin, r- L
as it is pzcjected against a tangeni-1 to P:virt, _, is V- 4. ;- t:>i p±~-± :dradl/

and is the difee"f -h r," -"e r,
= the vector difference of the o .. .of ±hI two "r'ia +" or ', e t2mgent
L. In conjunction with this, the ring ventor, V, around th- ce'--tn.:i, 0 A is
-ovano. eby thr' folowing e.nrressions:

f V LV (m/sl (4.45)

to.cz-=ing the diffe-ential area,: AS, w'.-"ch is cut out of the curved surface, S, -a
is the iit vector of the outward nc-nal ine of A S and fo-ms the angle, , with
0 A. By the sane token, the vorticity of a three-dimensional vortical flow field -
the amount of ring vectors Tut out by each unit of curved surface

'=IV -VX V Jim rnsj m a

1% (4.46)
,Then AS dS,

(VXV dS #LV drr (4.47)
'he equati &ove takes the linear ntegral along the path of ring flow, , and urns

it into the duplex integral of the vorticity ( X V) projected on u along the cur-
ved surface, S. In fluid dynamics, this is cp'1led Stokes law. The "vorticity" of
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1*Vortjicity of a Three-Dirnensional 171,.- Field

Vj t'ie cros:1 prrnduct of two vectors %V and V ;therefore,- St iS t*2 a vector.

CuriurW=(V xV)

Ox ~ ~ .49 -

8 ~ fB2 11

.1O-
U(so + 4W +.w --(.8

is o-r b~ to, srite ofe "die'ynce of~q Pd-YS.4, the C

CU.x.- x V-- (4.4)
.a - .

U 87w

Y'qatrN bu h fc attefo pedvcctec:.et
-fte4eolh au" euto 44.Acriet nain(.7,i

is o V-t the -'iecne e-a - n -i



and is c1alled the orthagonal coo*-d nate Ia-placion computational sybol. If one is
solvine for the "vc'rticit," of the Cradient of,4, then, because of the f act
that the square of this vector times itself, Tv '=v 0; therefore,

~' ~n-nC- Of t"!is i'l that, if a flow field has a velocitY valuel,41, ( in uhich
case, it is ralled a "value flow field" for short), t-hen, its I"vort icity" = 0.
Accordig to -,at-c-ns (4-41Q Pnd (1-48), this ecuVatr- tc th- il~ea that i0 = C.
Th-t is tz- ca,. that, except for ar isolated, sr ,cial rznwithin the flow fod

there are no s-Ti,1 rias~s of rras which have the 'o--- of a turninc solid W1hen con-
-~~ r'-,~ iS simply rrc-ns that therc is nc IiA.i y * Ch" orwi

is imimt *by "non-.iscous flow", "nn-Vcrtical flow", "positicnal flo)w", an- "isC?
throric flowv" is all the samne thing, that is to say, the-., all rmcs-n that, within the
flow the-re is no viscous frictiani, there are no she=r forces, r, w ich is to sa-y
th-t there is no 'loss of power due to vo-tical turbulence flow witl the resultine

rerlosses into "heat of frictior." Because of this fact, if
oro doe,- not includer hourld-ry lisyer se-marntion areas, nrr---s ofr waPke behind obstacles,
-r, voz-tic 1 20. k'5sw lhos rit is -os.oible to say thnat t";e "main Ir-ow are4 r-
a flov fiole witsr mo rc .tion vlaue to it. Rowever, attention shoul.d be naie tc th!I
fa-ct that "~i-l"or "vortines" cmn develorn and exrerndg 'hey can enlarge, Ibren'k
up and d,-c-i" irto turblenlrce flow, which cpan di-srapt the "main flow field." In a com-
bustion chamber, in order to mark out such a "positional flow field", it is neces-
sa-. tc assure that cor=t- -jn conifions are 15=esent.

,%c 7 R}frnai~ ate Tensors" ani "Matrices"

If oe cooss azer pont which does not move, then, in a th e-dimensi-nal
flow field: V - iu + jv+k;;the r-adial vector

ir rrz+iy+Ax,-irx,rj-y,r-km-z; (16.52)

kAsme that the velocity vector for the origin point, 0, is = 0; the vel-
ocity 'e-ctors around the zero point (in its v-icinit) -V if we expand V accord-



10 ine to the TaylIor series, all that is left is a first degree vector derivative, aid,

in this case,

V'M 0 +* 't V 1 jr- D(Tlake ca;reful note of the f-act that VVis

not thp divergence * V -V) (4.53)

"Defc--iation tensors"

JD IV -S' CV 4i ±V + OV (4.54)
ax ay a

"he -*--crc r.'7b:rS th?±> Pr -ct eri-nt ir a~e 'i soncorUa - t

fiefinc a ."'ctor, r , nt.at way; the, nine nm~berr desIgnatin- thre- veetorS def-
ine a te~-ior", * er~atic) .4) is a conibiat -n of t-h-ee vectors. The comn-

1nnt A*-Ct:rS 'Lor Uectt, v, an-, w. c'- T~ r ari i~eei2

X,, ar' z a-',atc, the: c are rine irtord-r nartial ~nvtv~ n :

rprr-se-t the "rte- cf Le'rrtin.I we e::tpna the th'ree vectors of I), we obtapir

ov .au &W _
-= a - + Ar + , I

Ox x 5. ax

.9 v ft & w-- , Or - Z1= +D (4.55)
OV a fh OW

Ion 'e "Irtp - ti.' r-, t liLhAr -'I-rc ' sft'- three equations in (4.55) and ar-

~ ~ -A~r~ '--' ~c-<I r-nj.' "sI, order- in a mtrix, then, one

au 'a w,

&u yOWJ

*(1) Cocernin the speed value, #'t iV ore ~s sveakinG of a flow fieid that has

no otaionl vlue tt then, accorflin7 to, e~inoticn (4-d") c.r em-wt-on (4.4c'), W =

I-u O Ow Wy

PO -'V -- - - - - -2n 'IV--s
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As far as flow fields are oonce~ed which have no rotaticnal value to them, the speed

value functimi, 0 0(X, , ) , when solved for the perfect differential

A!L& 8q i + 2- i + it (4.58)

Accordin-c to ecuation (4,4) from Sec 29 the gradient of I4

grado-vo.V iL +VO 4

-iu + iv + 4w

0:I to t- -C!

tO ~8 up2t'" o.W (4.59)

.r a z 7 1~ C ; f Ie Id

04) 0 thuSd4) ULx + vdy + w d (4.61)

rt -: np. t7- -na dstr-. -u-I.rY, 2), V (z, Y',S)

w=t1(X3, z)*Yrecc t olw that eruation (, .6o) is the perfect dif-

- ~ ~ ~ 0 an h~ 4) d It is pos:sible to Get 41 b-, inter-aiic'n. Or, to

G,7 _. .. 'ol'zxdq it is only necessary to kniow the speed value, # and it

- ~.rc~~rU life-entiationi. tc solve 'or the thxrec conn-onert voctors

* .. , ~ -i., t,. S* < I W 7 1 .

tii F! tric, DI,~ !2.el'z_ vch have no rtto J ueto ther PP c-tirel-y srsce-

-- .- oe Oi.

t~2k~abc~the fact thaPt, v"ith 1.2y J. > wet-ical r!z it~ls is

-osI,-.~eto rePresent them as two-dirne-si -na2 flow fields either or a meridian plane

or on -nr2',ne of revolution. Thbe continuit, eia.t~in for a stable, compressibley
A 'o-~"rr c~a~,-lane 'lmq fielO ic- as follciw. n-crd-Inc to ai-< S

£Usine an isethern'ic de~nsity, f to eliminate various quantities from the equations

above
(PU) (4.61)

FX \P/ Oy P/

ags~~um* _± vu .conlstant
- Ox P~ ay - U (4.62)
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Consequently, accordi'g to equation (4.61)

(4.-63),

So~ving for the perfect differential of the flow function 0' (x, y)

j4=i + -y. (4.64)
- OxC Ov

S- ir 'g equ~t~'n (-oU2') into auat-in ( 64)

d4' d .+ ) Ay (4.65)

or. th .4ti'ns of Pnu.tinn (4.63), it is possible to inteC-te equation

"bta-. the f- n t4-, 4, . If 4). = const;an.t 4, 42, *fo o, d4=

'?*hi-*s also lpr t)-vi +U4Y

or

- --- - - --

BEiuation (4.66)o is ca±,-:~ a '!.Cr: -ti";*th thr, -F rpoe-sible to draw out, on the x-y plsne, the flow line 101h = 4P, ''2" herefore,

4' is calleF the flow f-ineton. OBviously, the direction, v/u, of tho s'pd vector

ju +9, is recscl; t*- ,(dy/d), of a tangent to a cT-_t"t point, P,
on the flow line; this is precisely thp definition of a flow line. Fi. L.5 draws
out a flow line snectrun of a two-4imenional, plane flow field. Asiume that a per-

pendicular to the surface of the Pig has a thickness = h. Then, choose an interval

distance, d,;, b.tween tw,.o flow lines, and d* . If one does these thin7s, then,

the flow amount passing through the cross section, hds, = dG. The projection of ds

or. the y axis = dy, and the proiection of ds on the x axis is -dx. From Fig 4.5

ono can see that the microflow- J ~ y14 )
According to equation (4.65),

I,. - --- - dG Ap (.)
-vdx +pudy t'd4, therefore " *d, (4.69)

The amo,mt of flow between the two flow lines 4, and 0,.

G G-GAAp d- A'P*( - 4,) [kg/s 1,
(4.69)

he flow function '4,o; which corresnonds to the flow line which matches the

solid surface of +he wall is equal to 0. Because of this fact, a certain flow line
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' represnts the amount of flow in the irteral between the give flow line and the

surfice of the wll, kp,* 41 (kg/s).

i -hen genera.linixiG the flow functicn 4 1iti by no means necessaz7 to assume

that there is no rct ,tional value attached to the flaw field being considered.. There-

fore, the fumotion 'O' can also be used in conjunction with flow fields which have

rotati onal. values. Eowevert because this is haqed on a two-dimensionial continuit

e-,,:t cn It is ).iitO. i-~ itc ise cn'l:,, tc "~~~nIa.lo fields. The con-

'iye"I p c' for wn ifzlreul, w-ir.r K 'Vz fielh is

.~rau~of his~U (4.70)

S+ d

W_ x

U4.5 =Z~tAV

* A7) rc F--C r'r fcr a -7~ 1v- ?~ 2. Insejrle ':All

CorvnarinC equatc-Jo ( It9, is n-os,'nb).e t.. Re thnt

ja Jh c-ient for t',e spepe value Is

Ih~ gr-adient for the flow function is'(.2

ax by &Z by
_iV + in(4.73)

ConcerninC the scalar product of the gradients of .0 and *,accortding to equxation
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(4.6) the matrix ii-f- , _O , if this is so,

the grad# "mdg= (iu + jv)- (ju -iv) u.''_ iiuv + ijuv -fV 0aQ;

therefore, grad 0, -nd grad 4' -e ort - -onal gradients, that is to say, the

equipotential lines defined by' 4 . = 4' 2 and the flw lines i' = '' '2**0

are families of curves which meet each other at right angles, and each four inter-

section points form a square.

Zo c "Point Sources" and "-T,-- Sinks"

Let us assune that we have a speed value function -,r ( + 3 + zJ)1

= the lmnCth of the "radial vectors" (4.74). b = a constent. uiiote-t'al 4p

"ace, 46... --t to siy that is enu:.l to the ?"th of the "rc1± l

veotcrs= r., * r.... which describe concertr4ic shericalsurfaces with their centers

and origin pcints at 0.

hcnciss_--n flc,- spf,.6 vector

V~zrd4'v.*a~m~.*.(4.75)

and th s is ner'endcular to the equipotntial surface. (A,75)' The amount of flow
fro- t,:e r-Tin point, 0, is G - 4rr2VP"-hp [kg/']

(4.76)

-t:-tic'r (.7) t " th raus, r, are un-elatee; therefc-e, the amount of

fl " "'h' h -szs wb~m: " -'h sperical ur!'aoe, C, h s the s.me v- uTe 4n P r-is-s.
If the es'--rt, b, -- -"-titve, then, the f ol' :Lnes reoncertrat- themrs=vres

CoW*- tie center Of thr "1rh7-es and le?17 out in the rurour-t, G (kCc/sj; b'-cav se cf
this fpctq th- 0 Poi-nt is !!q a "point sink." For exp-mrle, sr'al'dg about the

outnr ring cavity, the small holes in the walls of flame tubes are all "point sinks".

If the co-ncernt, b$ has a .eCative sign, then, thr flow linoos are ernri tted

-~ r' "-e -o- t~rcA a-he :mheres P-nc3 p~ttere, P' thte r~tc of G ehf) 7he -

fore, tho - ncint, in this inst-nce, is called. a "point source". For example,

'he vanorization of the fuel droplets which are sprayed out by centrifugal or strai-

ght jet nozles.

These concentric sphereio-.1 surfaces are all surfaces defined Dy equal pres-

M.re vwlues (FiC 4.4).

If one is dealing with a "point sink", then, the closer one comes to the 0

point, the faster the flow speed, V, is ,going to be, and the lower the pressure,

, is going to be. In places where r - O, '-00 . This is actually impossible.

Therefore, the speed value fumction,' bm-l/ only represents a flow field outside

*i.93
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a very small spherical surface arounmd the 0 point.

I i

Fig 4.6

I FLow Snectrur of a "I1ojnt Sink".40= 2. Constanit
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Chapter 5 Momentum and Potential Energy Equations for Viscous Flow

Sec I Liquid Micro-globular Surface Tension

ImaCine a liquid micro-rlobule in the form of a rubp which is separate and

standing independently awsy from a viscous flow field^ (Pig 5.1) Using an ortho-

gonal coor inate system in x, y, and z, the volume of the liquid micro-mass, dVs=

dxdydz. - erch of the si - surfaces of the cube-shaped micro mass, it is possible

:r-~te ot no. tf e ± ns..le (.:'e~sse) forces which act on e-'ch face from three

. rcic:z; these are .F; it is ssible tc ident-

ify frirtion shetr forces vhich act from six directions -these are Piro

1 ,, i ,~ sr,, , Each surface receives the influence of one pos-

itive tcnci-e rce, a'. E.n t,!c sh-ar forces, 'r. T The base coo.rdinate of these

sh-r fcrce-., .,is iete_'rined as fbllows: the first of the base coordinates ind-

icates along which co-rdinate axis the direction of the force lies; the second

bast- cocrdina4e I c;_' cccxdi'-ate axis the plane of operation of the force I's

pe-eqniular. For eranle,' . indicates that this force runs Plong directian y

and its plane of ope'r-tion is perpendicular to the z axis. The total forces ;.,hich

act on the ru-face of the liquid micro-mass along the direction x

(a. + -- !dq)dydz + (-&.)Jydz +

X dxdz - (r.,) dxdz + (r. + R-Uid:)dxdy

+ (-V,.) day. Da,' + a51. + ormdxdydz 51

.he samr- toh:mn, thf totp.l 2orces vrich act on the surface in the direction y are

y as (5.2)

TnC t] fc-cc_ '.ic ar?" r. the sur'7c" in eetior

+ dxdyds(5.3)

T-is can be written as the three component forces of the =--face tension R
i*;ch is exerted on each unit of volume
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+ N~' (5.4)

K W +J,+ R;(5.5)

-, , ~~A - ~ =It V'otors.

nZt I cub-qhnPed liquid ro-MasF in Fig 5I is an elastic hody

nlr Is- tvej ..- n, the totail nomrent of fo-ce P_-m aniy

CI_-"x, yorm eul tc zero. For e~famleq the riorent cf force

Aro~-j t e xis is enial to zero, and in ' t is mossible to obt i

T7.dy-dzdx = r.,.drdzd)y, (5.6)

_:": Ty = . (5.7)
cr~ir +. ±hc~sane princiTrlest it is pos:ib to obtainr

VEX V, (5.8)

* -*".t cr forc P ->2 r to s' ix t-rpes which dpterrine the three

&lJ;7Z~~ oarix II1 the

V,. C, 7

-Um ( _CitCTC rotc~ -the u'n'er right nn 2l7Ae- le'et
_=n - ..- thei-efore, tV-- in ca~lled a"e.itc t'-

Socc 2 Me Rlatiorshir7 Betwe-m Surfce Tension and the Rate of Deformatim

-- ~: ~tr ir, and tz~ te shc-z _fcrc-s, V-1 cause the liouid T.cro-rnas

tc rIf= .c-cdim to the convntions of elastic dynamics, the pulling and con~-
t'~ti ~f-rces alon : the normal line of the surface are the "tensile stresses", aj

t6.e cocr-cicn forces which act against the direction of the normal lines is the

"rz r ion for-ce", that is to say, the pressure, -:i; therefore, v p cod.

Ing to tic viscous she-= force formula (0.1), if one considers only the shear forces,

r t in th e directi-n, x, then, ig

A--
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Ecuaion(5.10) explains how the shear forces, " , and the "shear force detor-

mation rate" or "shear force change rate", in a viscous flow, are in direct propor.-

tion to each other and that the coefficient of this ratio is the viscosity, P,

(kg/r. ).

When we investigate the projection of the cube-shaped liquid micro-mnass on the

x-y plane(Fig 5.,2 (b) and (c)), we discover that the shear forces, T*, which act on

four of the faces Dinch and pnull the cuhe out Into the shape of a rhombus. %-e

original eedge angle, 7r/2 v ±educes the strain angle,. (r, +~ r',), that ic to say that,

T, x . = r p r + On) t- 

(5.11)

Sthe same principle, if c-ne 2-keP a- -ojpr'tin- of the cub-shaned lin~ic *.iro

mass and divides that projection so that it is projerted senTar:tely onto the 7-lanes

zy and xt, then, it is poscible to obtain
(T&;" + b (5.12)

(LE + Ou(5.13)

asa

ey

U5 .2

1. Sher Str- in Angle T.'wo Flane ShPear 3. Four Plane Shear
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A~t the s-.m- time that the quadralateral in FiG 5.2 (b) is being deformed b, she=r

for-ces,' 9 into the' -hape of a rhombixs, there is rroduced along a diagonal line

P te-ns-ie 7tresso OF and alone another diagonal line another tersile stress, f-
(Fig 5.3(a)). -!?thin the original square, if one connects the mid-po:ints of the

s ides, 'lie resultinc lines mark cut contiguous squar-es (subdividing lines).* This

being t'he case, theng when the original square is changed into the shape of a

ronhr.s, t---se interior con-tigizous squares are pushe and rulled into the share cf

CI zr:;a< t~. I rJ J E-:-- Zand CL~ .t - -. ." a:- 7 or 'w 14r

*(j '(:),the-n, accord.ir. tv the eqiibriunr of forces, it iS "b to sE.-

t>- nt t", te force exe--te, on. the Flarte,6 side i4s "ot teno ile st-esz-, a, *then, it
as c'azi~yco~resa~ sress,~. Asume tat the 'ength of the ic:o'-

a, n the de-th ~~~va to the murf-ce of the iutro is ei

t1,tlie? , thle force equilibriwn sz-,.tionr a-re

-because

Conce~ni tChe cu't-zinC out of tritingles alonC ano~ther cic'; 2~~
onT -ci-Ies, it Is n-oscible to- write the f orce equilibr u- ~

that ol, =--.;due to th!is fact, 0 1 2i2,r -(5.15)
-~ *.','~-~ ~ A II "i-' 11,71

~~~ !!IcP p ha'vc,d from / to ( / ';the diago-nal lix'o kO is rt=,etc,--

t .e length AC'; the d ia C o, -s, line ED iJr :zhortene!- to 31LD' moreover, thje n- One1

"eloenp-rt ri-istarne, :~ '* t is -n-ossible to look at 3 s en

arc lengt~h arom~d poirt A. 23 cvab cf this fact,

B B'-EM'mh -'DD..

'E'- is m, 1;occlesri'' - C;t - 17 Thrcce ,

nP -.. L.r-t4-S

- . yz
2 2'

ther-efore, the- diagonal line C has a "to.sile strain"
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I7 .
1. -afae -mrIn G,'* and Deo atc c- .. idMc-O. sItro

Squares ~ ~ ~ ~ ~ Y Chme oRc~ge .0adT-n rth-n n

UP, -3--
I(5

AC~ AM 2

2 2

1 * -'r aIce d.ections ,Thqcux and to osptecLinai Mco-ease wit Ithe to i

Canas o the ucrio thesqume (igiTe (b) whe p thsis tc rvesthttedana

GsoLng according to eriuatiJon (5.15), these eculities mean that

In all cases, strain on a micro-mas,: is only -present due to fluid moticn



therefore,

at a at by s'

--hr _eze equ~-ities are substituted into equation~ (r.i9), it follows that

Usinp t',- slme -nrinci-les

C(O*4d u Aw) (5.20)

znhe ev--a;'e ncnna-1 stress on the srceof a liquid micro-mnass

1 .(a.+ a;+ a.)-- [N/r], (5.21)

If equations (5.20) and (5.21) are added together, then,

ax y 6z

+~ ~ Ou +',uO

us, : eJZJ LiZ

.2 1& v w 1152
3 Ox ;I.

By the use of the Came prncifrles, it is possible tc obt'An the fo-.lowLnC

2 - f[8a_ O w] -Lv .(,,,3)
3 -Aax r -vBzi by, -

2 p 2 [O u + _L,+ -!! ] + 211s . (5.24)

Sec 7,;onetum Bc'nations

~cezii-& te sx eu~tr~s(r.11) to (5.13) and (5. 2) to (5.?4), nl a

take tho surface ten ior tornsors in the liquid rnicro-iras:z in Fig 5.1, that is to

say, the nine stresses in the symetrica2 matrix, II, Or.,. s, n onc

them ur wit~ the nine -nartia2 flow speed derivatives, 0 u/bx ... au/Dy, which corr

from the, stres- rnte teensr, vV*According to the laws of matrices, when the rows
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and colums cf a matrix are interchanged, then, the matrix is called a "trmsposed

matrix." A trans-osed matrix of a symmetrical matrix is equal to the original mat-

rix. For exa-,le, the strain rate matrices that follow
Ou &v OW* O Ou OUw-a x '&X 1rnpse a1CyO

-OU- O Ov -v OvVV -67 is 'VV -m.

C)U OV 41W aw aw O

that is tc saoAi

__Oyti __ , ___ .

-nkin.- back -'o= a moment to Cha-ter 4, See 4, equations (5.2^) to (5.24) nor-

l e """overcean of speed vectors, V,
I - ---. (5.27)

Because of the symmetrical matrix of surface tensions, II, it is possible to write
4hc vector enuation'

R -a(V VV .- V (5.28)

tc eeirati-7*J.~ and (c5.2?

R v . B-pv. (vv + VV)-.vp
2 #&V(v. V) (5.29)

.3.

Du t t~c -Tt~ thisVT7. (VV + V) _ V VV + &VIV. V

"" i.c z -c ~ i . eq'uation a ovc , t, tnercfcre, fellow, .-.at

(533

If we take eeuptio- (-7,0) ann substitute it into the momentum equation from Chapter

4, 7,o', 5, thor. one nar obta4 .-

La°" . 3 .

+ MV'V [N/m'] (5.31)

If on, t':-es the equations (5.11) to (5.13) and (5."?) to (5.24) and directly sub-

-AA*i



stitutes the stresses from these equations into equatian (5.4), then, it is possible

to obtain the three momentumn ecusticois that follow:

dyby yexFA

+ -L (2m + 8v4UI

'g, (Ox D z.. A

Y a8 A + -- 0 a -. 2

Sec ~ 4CI otnilTer OuatIo'o lwFed

fl t* -j -t

of 4,udcn-i~~e-4 .2e~&'E

enery o e'T '~it raos(thechpis clenr otie niei) .

the~~~~~~Y Aunite +etoated'es anuto as athc s u u veysc

from th fooro surface +Sz

- ' --imnioa - ~ ai s Al hs-qain ae--- ir -fc~



-. 4'V-mdS (5.34)

The rate of incr.?ase pe= second of within the control body, V

In the er' lirca- tp= thif method has already *v"n used to obtain the conti-
~~e~'ent, ~if weic , then., withir the ccntrc2 bb

the ener,= trmnsformaton rate OE dV, .~ +f

X E~V - )dS N l(5.36)

Accordim-ir to the -yimci-nle of the consezrvationi of ?'neza, ner -a cannot J-, st

be -produced, ncithzer omi it be destroyed for any r-ason; it can cr.!:; c,.arZc fern.
Therefore, the -- 4- ' t-sfrato of ee~:j vi'±hn th- r'Ontro' )c,yt ,~i

be e-ual to the heat erer~ being added t-- 7 eS 'ysen hruhierr
.ct ith the environn't plus the power absni-b-7':V eve-7y second f rom external

See ?) o the --. v;iru-, chapter intro-tuced the idea that the e-isece of -a tep

er'-ture gradient 0ue7a heat flow, q t 1c]ni ) If we asriane that =

t he th e mnI .1 ~c~ en - (knalI/m3)t then, gV q -q f we svbrtjtt hr ~
eoiaation (5~)and -.2u,: it into the negativt- heat calculation, theri, thp wnor, of

thermal enerc,, th-t is received through the e:-tct--al surP'ces evr7 se-cond

The trnnsforrnati-n of notertial ener~,- per second I "pV, [N - m (5.36)

Pi±g (5.4) (a) shows the cube-shaped liquid ricro-niass dxdyd? = dV 6 and the ncr%-
*mal forces, ' t as well as the shear forces, r. which act upon it as projected an

the x-y plane. FiC c5.L Ch) shows the shepr forces,. acting on the inas-, and causine
~dlsrla--ient r6eforrnPatIin, --te (Ou/Oy)4,y in the directio-~ of th6-e s-hear;

thi Fi alo sowr a o~ial orcX, 2hich Ceives rise to a line.71r 1 -ie atc

(ZOu/&x)dzlm/sj If we talke one oiible meter ats the. hajcxn!t,
* then, the total POWer, W, whlich is eye-tea every second &CiInst the liquidl micro-

mass, dIV., by mrte-na! force', is e".ual tc the total power of the ten-sile frorc,-es per

IL



K7

gap' V_ jig C,

(a) ~E~ia (b)

. L"cens-e-is s 2. -.ncilar "e-t>-- ar.d Lnr eftrrnation

Oz ' Oy~t

'-(5.39)

.2we tci-,e tne str-e~ses fron e-up-t~cms (r.11) to (5.-13) and (5.22) to (5.24),
v T. anci substjitutn- - 4-nt' equation (53) theng it is pos-b'le

called

W .=-7 pv) + 0, 4) nCrI-n' 5.0

S(by+ (b)]---d.V)2

+ (-+ )+ yU -+ a)

T h e t z t - ' 7- V , e : e r t e 7 ! b y m.U r' cc ' e .- o n r - w g mi i s t t h e c o n t r o l b o d y , V 's
WdV, (5.42) .,ov, accor -1,,^ tu Piu-t-i'n on~),ce can v=-te out the --er,7

~i~~rfIU~e-uation fcr the no-trc2 body,, V:

a" (PE) dv,+ #(PEW)V ndS

4q m dS + f, pgVdV, + f WdV,

* (5.43)
Or'c ou 7ht now to use Causs's 7-heorem to transform the double inteegal, along the sur-

1 4 
fae Sf " to the t.ir 

.e in -tegral of the control 
body V ,
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'(PEr)V adSm V - (PE)VV (5.44)

fir q S fs -WqdV,, q- - T; (5.45)

Aftezr ernuatians (5.44) anr (5.45) are substituted into equation (5.43), theng the

2-ntec--7.a fimctions cn the two sides of the equal signs should be equal

Baa-s or thp f act that

V -(pE)V = pV VE + EV p + pEV -V

*E - z ,md P-P(I, tj, s Z)

forr o' theIr -ez-et fifferentiealst the richt side cf the eu- siM in ?unt;,-

(5.46) can be written as

p PE+V. VE) + E( + 4V -Vp) + EV.-V

dE + E df+ pEV -V y ~E

+ E - -- + --V(.7

~ow'.'rin thbe fi'nal wna-y~s (5 it'(7 4T) is nothi-nC but th- continvit --

tion fr-or, Chater 4, See 2

+ pV - V 0~ (5.48)

+ V -. (pE)V ~ ~~ (5.49)

? ~Fror the Icf--nition enthialpy

i - U +Io , . L A !+L - ip dpo
as at. hs. e Ak

dU di -4 + Ae+ [C V)
du as p at * 2

-T7.)1 (Area in curve no increase or decrease



Still ermloying the ccntinuity equation (5-A8)9 it is possibl.e to kniow thpt

Th-efores it is moszIble to obtain

B eeiuse

E U +I V V, dE d L + IvV
2 4: Ak(2;:

(5.51)

cw~L ;mi'~ -zo (7.50) into enua-ticn (rX51) P-n a ther, s7.btj-tttz thc

o w. r ~ ~ e-e'ft2 att-tio to -I -,? at-'i

pi dp "_ Iv

17 - (IVT) +pgV -VVP*+ 0 (5.52)

Sfraq t~e relationship, V i v+k)-(U+j w ,+W O

2.s e~eby usi-ne an or-tha~cmal coordinate sy'stem to analy-se aqueation (.)
it inroc-zible to obtaini the ee~g equation for a three dimensional, viscoust comn-

~~ib~eflow field:

P~~ T L! -U + V2 + V61)
do 24:s

")+ a (A OT) + O ~ T)]
as ax Oy Oy &z a

+ P (Ug. + vg, + wg,) -. (

+ IPr ) wV + (5-53)

* 0 i~h~ ziJ~~ i~the ~i~~t .co'ntart (e~upti- ~'),t~

to say, it is thn Dower :aissi ate by friction in each squarse meter of liqui-d,

See, C-c-rnrptc T-ans-formtion Coietdfrom Amminrt of Alter'ticr)

*:'y do v'e use vector-s ancd tensors? There a.=e three rParnons:

(1) Conclisenecs of Form Cori-plexc functio-nS, equationsg , nd so on, need only



one equation or formula in which they can all be sumnarized."

(2) Ease of calculation. It is possible with vectors and tensors to employ

vector algebra, vector differentiation and matrix calculations.

(3) Coordinate flexibility. Vectors and tensors cn, according to require-

ments, be transposed into: orthagonal coordinates, cylindrical coordinates, spher-

ical coordinates or other curvilinear coordinate systems in order to deal a.prop-

riately with actual structures and flow fields, The large majority of combustion

cha tv.- t'~.res a'- a-rropriate for cylindrical cootdirate systems or axiEym-
-.z3- ' -rj; A7, .; is section irtroduces the method for takinc orthpgonal coor-

inate- :, ., 7 -ne tr-nsforminC then into cylindrical coordinates rt 9?t z.

(,)', e, •cylindrical coordinate system

. I . .' .I: --m ' .lj .
***# ..,

A,

(b) , plane

Fi. 5.5
I r, , z Cylindrie'. Coordirate Sistem and a Cro- Section -Prcjection in the Plane

ie"

Fig (5.5) (a) shows a fen-shapnd control body dV,--etda gerted

at an isolated interval in a nylindrical coodinate system r, '0, z in a three- dimn-

sional f3ow field. Thi.s cnr airo rer-eient the oontrol bcdy for a ring shaped corn-
107
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bustion chamber or an analogous fan-shaned section from a test flow field. Imagine

that there are flow lines passing through Fig (5.5) (a) at the points 1I1 and M,

where the eage angle meets the slope of the fan-shaped control body, dV5 . Because

of the fact that the coordinate positions of MI and MY, are not the same, the mag-

nitude and directions of the speed vectors V and V are also not the same. There-

fore, even if one is dealing with a stable flow field so that o , the

!oca.1 velocities a' v~v-z pzints do not change; when the liquid micro-mass, in

f ii t 1=! 41 iao ,  b A , f t a p to have "shift

acler~tion" ('V. V') 'V.

If one defies the wnit vectors for the radius, rp the circunfe-ez-ze, rB, a d

the axis z as e., e e' x then, according to charter 4, Sec 3, we get
C OW - 1 , *r e, -= ce " ee "= e, • r, = I

,dot product ot parallel vectors

CAs 0  0 , C, e e - es e eI 1e 0

dot product of perpendicular vectors
(5:54)

Sin - X., e -Xe e#X 'e* . €, = 0

cross product of parallel vectors

sin 900 , e, X ea = ce X e, es e, - I
cross product of perpendicular vectors

Th-.'efcre, the. - --- tcrz in a cylindric.- 2 cocrinate ystem

V.- e,V, + ,eVe + cV, (5.V)

' _The ac-ele_ tion Ye-tcr

OV IT

Because the horiz:nr..tal cross section, r, 6, is pe-endicular to the z axis, char-

g o= in V i. an d V , do n ot in fluence V . T r= e rr-n , it c- _ o c-i c t z t.-- -'

scx-sided bOWy and -rject it onto the crot: section r, 0., for rurpnscs Cf P-P2,-- r4a -

the "shift acceler-'ticn" (V V)V from point M 1 tc point M2 (Fi& 5.5 (b)).

Take the rn.dial speed distribution of point M2,', Vt , and move it smoothly to

point Y ; then, mpl:e a connarison of the maLwitude and direction of this vector and

V It c-an be seen th t the transition from to V' can be divided into two stepr:r"r r

First, there is a change in direction c1, with no accompanying change in mag-

nitude; the-P is an incre-'sp in velocity 'V"ja o .

later, the magnitu4e of tho vector 4nvolvpd dops. change, and the direction

does not change; there is also an ince=-.se in speed, A.V', in this step,
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Using the same idea, take the circumferential flow speed distribution, T*, for

the point Mi and move it evenly to point V 2 ; at this point, compa-e it with V',

in manitude and direction. If one does this it can be seen that the process of

change frorm V,, to V'% can also be divided into two steps:

First, the dlrectim of d@,1 changes uithout a corresponding change in magnitude;

in thds step there is also an increase in velocity -AV*GCVdB

.rctee is a nh-nge in mafl .tue with no co-responding change in direct-in;

C.~f ~ 'hcr_ is en zncr-v~s inr velocity, Vp

-7-' '), c-r se that the eire tions cfA, V'' and AV',' are the sane:

Sf t..-rectio of tae shear line; however, the radial directions, r, of

, V' Wne V' are o-nosite to each ether. ''JWhen M',, tends toward ahe point , and

as- 0, t,- 4 is nr ibe to solve for the extreme limit and obtain the radial

A~V,' AV' 4dC_ __. _ V
At = At do J

,w , _ Le (5.57)
it r

. - e:-ri. li- a' -. np the c.r.er etial direction of

as lim [AV,' + V, T

+ -_.v V'Ve + ' -(5.58)

...........c~r- .vez' for the --+rne lirit an6 obt'a.ins the P-7ial dire'tion of acceler7ticr

dVL-' Asv: ;.. -.': '.._ (9)

7 v.-~Ctor- N , v._ r.ty all -,-nctions of coordinate and timel

.- -'ve!- srolver- fcr the perfect differentials, -that is to say,

*~ ~ r + . * 2 ~;z (5.60)

v.- v.cr, 0,, ,. _,,VJ

_3 a , t .r

glo
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Vas dV.A +V 4, OV- (5.62)
At as o

Ifoetaket e'uatiOns (5.60) to (56)and 
substitutes them respectivelY xt

pitns(~7)to then, it is 'posible to obtn the thep 
directons of

+ V + VO kv,
15' or fe (5.63)

v.+ V, OV,+ V O
o r

+ V, 0iD'- + VV ID/s (5.64)

Axial ?irect4-on

Aix- + V,*VL+ V.-v + .v1  w [152 (565)

The ast a~ti': neiuation . ) is enrita aclez,ti'; helast (uenrtit*1-

in (*7,VyOV8 I Ac o~±~ ~a~ f the fact th~at there is oaymt2

an~r~~ moti'-r roizic on at t~p splna time, ane this -o'lUOcs what isoiEx'I

Shi accelieration.

lorhine bash on th- a~cslezrLtion vec'tor

a~~Y.+(V* )V, is aniZ cnc c=la

'he vcrto-r -!V r~ti' co'ntatjonal Mybol

+ ~ ~ 8(5.66)

u ator ~ ( e -- p 1a n s th e f a ct th at p If o.e us s a "itit ctrthen, it -Ioe

not make an- differennr what coo,9.inate S-Fter one is dealing with, lqis" alway s

a-ro-riate to use.
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Thie computational synhc'1! for a perfernt Fifferentipa1

8)(5.67)

Local acelerntion
O 8 (c,V, + coVe + e,V.) o'0"

0:q (5.68)

(c,V, + eaVo + v.V.) (5.69)

~*.o~i~-~' ~ -'~-~ ~-e_ and es va~vw h~zj

0.~"o~,vhen er-ti or ez e---nAe~, cne neodp Sog' e 7 0 , e#l' o

the product of tqo fjnc-o-1cs ir. cri- -r In sc~ve for thp t---~ ~'i1. fLt-

beinC7 expanded and set in order in th:isF w-Y, it c n be a 2  
14 :.i-r(>

i.n 'this w~ar ane ci-m obtain, frr em'at- ofls tc P7~ :~c '~v

for co rnne-it vtc of acee'trk

BY if one is deo?21njr Wit' a stable, aCi22' m'e t-'- 1< 17

-- , thm, in all caso-r w~here r an~d z on the merird'iar '

-pflow ! -imveters for t' c rnt a"-p al q te 'cc t'-t ts :>:

'I1 S'c'- so dr , nrsi'T-c p r~-." T, anid s . on, -s.C v\Lt

j'- 6 ~n~~r"-yfunr-'w Of : r~ *~ 1 2 .rI)a~reta~,~

if one sim-rlif-es th- tbr,,t fo'c Th for acc,.elezrntjon in thit stable, ax:ially syn

+ 1'+ (5.70)

a- ve + 1' 0Ovu + _____o (5.71)
ar asz r

eg V4 a v. (5.72)

+1



If one ta-es the important equations which were presented in the previous chap-

ter and in this one in terms of an ortbagonal coordinate system and transforms them

into a cylindrical conrdinate system, then#

(1) G-adient

e, + e' +eA= a function of some value

(5.73)

y~v - 1 (rV,.) +_2. elD + ,

r 17 r M Or

-v__*, + !L, + V L eve + 8 (5.74)

(O) Vz,,-"; Or r. r B 8 Oz

r.o- y -,- \-f- e, (,'., V

+ +t-e--"oJ + o- ,)](5.75)

(4) Continuit,' Equations of Compressible Flow

'D_.+V(,v) -(" + ( )
8:N r Or

S + +O(,eV, - 0 (5.76)
r 80

or ' can re berltTer

op +__ +,_ + + o
at: a r TOO

(5.76 a')

( ) Iprnoyin- the accelerations from equations .)to (.65), one can trans-

fer the three mometum equations of viscous flow (5.7-,) into a cylinarical coordinate

r-'stem, and'one gets

O+ r 2or 3 V V+ -.--L[ P(-I ._+ _,V - L#].]J

+ + + 2
\z I a Or ar ,\

A - I [N IrnMl, (5.77)
rOD r

Circumferential vector
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Paof.. Pg + (2&V,
+A~5~ +Pj~

or F.' M~ - -

paE~pu--~~-j2 kZE--V

~~~~ ~ _0+ +V_

+,~~A + V)+ E)

par pY[~ 5.0

&1 Ox Or_

+ (jg Vg +I)

with te re80 -t0that

Or' O 2~92(5 9)

:r1r~ in a ositeionlfnc ted tion (nuer cli 0,,~d *rnv*(,j'6, ir athMs., r t

4),- 2p - )- +



Iif used in. a vector field, for exannlDe V -V(,#*9 z) avy,+-9*VO-+ YMVS

'AV MVW - e,V, +.*'V, + ecVIV. - (5.84).

* By the- utilinatio± of coordinate transformnations and changes in dependent var-

i-ables w-' well- a ! by the use of non-dimensional (dimensionless) variables and other

.tue, it -_*s occasicnally -possible to take romplex flow fields ane the

7hrrn -irr2ify thse nuleq and), e~nre-ss then, ir a rjs

- ~ ---- ±~c ~22 r". 7-!n.nhrzrt thF fc-rp C c--' eeuatimrs

* ' -~are ore A fron h-, to t~ilt these ecluations still. follow, such natu7-1

t~'*' ~o~.~ rOf nass, t1e onserw~'tion of mcnentump !nd thc cr-
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Chapter 6 Spirals and Eddy Current krnar-atus

Sec 1 Spiral Phenomena

Swirers and boatmen all kniow enough to stay aw:fromn whIrlpools; they know
that the violent spinning flow at the cen ter of a ehirlpool is capable of tramieline

up a man or a boat and puJllinr- it under. Consider the whirlwind that sco'ur-s the Sur-

face of the land and~ C,-P uT dcust .anc leaves andc tak-s the,- up into i-tz etr C,

the snp, - ~~-r=Zw atc~ i~as~: no! ri-.-'

F1, ov=r -- c -

inlto a vortsx-r b lhte _ trs e close- one rroern to the cent-r o' the' v~rte:x,

the f2-Pt-- eoes the' wnt-er i-. vclve. Finallyf at the vet'm mout], of'~ he vcr-tex,

whe-e the wretr e-nch, -~ - a!- a 2,n - center and r c ,.- tci- at -ne '?ti

center Inakes noiSe," rink p &r qC ..!terp flOWS inVto it.

Cyclon.-c fu,-aces anO cenri-al dust eliJr,.inato~qs all havo wi-nrhi thon vcrt_ nf-:'

air floiis. Centrifu 1l jet nonzles aal. surnly fuel in the direction c-' the hczle, cnz.'

in t~o rn Hirtior rharnher, this fuel sets u7 in a vortex and is sprayed n~ut -4n .the

c. a 1Thv~n'~~rr~. Thbine jet 6, turbine jet 7, the exhau- of _eddy

~ ~ .~ - '2~ .- ie intake -ases whi.ch na- cver the v--nes -4- th- corn-
*'-:n-wPn~er of P i'~ et 11 -all of these have !-imilar vo-tic- 1 f! -w f ields.

nn ;' -ofrt is e-)ncent on chanees in the potential. enem - : ofli

ce~ in~ti' ~e'.r'-or ;if'e-ntials of i-'-tor level) f'cr it

because of this it 1-,ntipl "low vortex." 7he rotntion c-zt rti

f'lcw vorti-en, rior'-ovc:, in ns. t:cr,,Ioue a-lied f--ro cutr-ic. fone iLorno-
los cs ueto fr; ot-*on, then, for (IfC rent inadii, the moments cf momen~ta cf rricro-
mas:3es Ofl linuid shcillc b-, nor. sered; t1herefore, this situation is ol.so called4 s"frec

vortex or snir'-l." !b~e special charateristic of "free vortices" is that "talthough

f low linrer are concentric rin.-s, the individual micro-masses of liouid ;c not in
themseivez have an,,*v~ na oe~ t hr. is possible, vthin

t-ouch of .7ater in'rolve i- th~ '-rodiiction of a "-otertial or -nositiont flox: field

vortex", to ;Iqce a &-,all w~ooden storner far from the center of the vr-tex an. to

daw a ,Iiamptcsr line across the stoppncr. The floptine of the scft woc.den stonnor

alorE the oirn'r-fPrence -'c-rpeetn! the movnnant cf mi~ro-masses of liqu:id; however,

the lactian of' the r' a'etter line o-: not chnge, th -t is tc say, thr 7-oft wzvcr
stopper possesses the -e-errl ro±-tirv rin the center of the vnrtex.,, but it does

not h-ve P -ot-.-cr c" lt - own aroin its olv.'n cwntral axis; this is cpalled "avotic~l"1

cirerifretial moticon.

&1



Sec 2 Free S nr-Ils (Positional Spirals)

if one 1iraws two concentric circles to reprcesent two flow lines of a "free vor-

taxi?, then, let their separatjor. irit--al =dr. Choose a miceo-mass of liquid ABCD

in the r.4st of the flow around the circum'ference of the vortex and located between

the two? flow lines we mentioned earlier (Fic 6.1 (a)). On the -RAiusg r, the shear

*Ve 3i~n t-F ie -livs, (r+ r~r), the chnar line ve2.ocit:; is

T', + dT'. re + d,.
ar

inr ~ = z~c~~lr othe s-,rfa--Cc of t'-. njrc; 4.f C, n

thi ~ ~ ~ -_ -_hr"., th che C: the riezo-mas of icid=rd $th- -A~ss m-prd~dr
.- e t2mer itc1 add; d tcor-uct :9 :,- x. -'

c "r o'v-r tine of7 th rort c' ro rtr cfl -the ricro-rnas c-' lioiuid or smro.

Fre- oto- most c:4-rl- hvvc nc-Ttrn2' ak4,.ed tc~nue, T; tner for , V,

iL-ores 'osses fron. frictiontU,iten,

or Fe=a constant K (6.1)

-he circurferta2 veloc~ty of P -ce- rc ~~ hr lrc 'tr v o

Ve forms an Thversp nroortjnn vifth thre -"2xil'-s, r, frlet

cmsto the c-rtc-r ol thie vcrtex, the ftr does th1e r-- r

In the center of tile vnrte-- , at R place wher'e r = 0, To shc:- ilri tn-r- r ':~

s'r *'o'-r not~ csr-r-T in'-ch =0 3o ticz'te)

V,+ V# C
C

A

Piz; 6.1

1. si-.a' Pow Vort .Ua 1)t Of .Aclr .T r oiti nn of;pco-a of lzi,,"id

Acoiirto the efi.nition of i 'rl-w line' ((map 4, ge" E), there is no f'low
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r'oveme-t i- a Oir-ction rnrpendicular to that of a flow line, that is to way that

V = 0. If ono is usinC a cylinaricnl coo_9inate system in r, 6, z, thon, the ? axis

is rernendicular to the surface of thp fiquxre, and it is possible, accordinC tc the

T-ethod in Charter 4, Sec 6, to 9Olve for the circulation, dT, of the differentiated

volume A-?M. Because V = 0,

ir (v+ oLe d):,+ do -v.rde

I'rdO + T'edrdO + rdrd6 +

+ drdrd6 - VerdO + rd@dO
Or r r

ignoring the 3rd degree amount 8--drdrd8) (6.2)
Or

-r= r2' Or r'" one substitutes this into eouation

(:2), thon, it is Dossib~e to obtain tI- circulation for ABCD

dr - "p ) rdO
r- - ,, -- ,0

'i~ : ~ circvIlP2-n on r.. nit cf are,

rdd- , therefore (6.)

Thoercfa rc, in 1!-e finv fie!,? of a free vortex, it is only necessary that the field

rot conLt.i_ . c..tcr valuF of z-'ro, and then, the circualtion of the circlunferontial

"r.if: r.nI-.t are-u, jr= 0. or the angular vcloc;_t" of

al t rc' - t-, . 0, that is t, sr- thlt the inicro-naws of liquid A.-M has an avert-

k . ic-l ci'x f-'-tinl motion to it. E' 'ver, if one looks at the situaticM of a flow

field which includes a vortical center value of 0, then, the radius is r and the cir-

culation on the circumference (also called vortical st-ength) is

Jo V)ei KjI9 2rK mwconstant Ar

Equation (6.4) explains the f'.ct that in flow fields which include vortical centers

v'th values other that zero, for eny radius, r, the circulation on the circumference

or "vo'j,' al strength", r, will niwpys be equal. Therefore, the flow fiel s of
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free vortices are also calied "equal' circu tieri" or. "equal vortical strorgth" flm.

fi e. s.

Lookine at Fig 6.1 (b): the eme-lar velocity ar-oumd point A on side AB or the

m4 cro-mass of liouid is

av.

-. ve, r- a-n- =4rt A. on side k7 or the rcoa-of li'-uip is

around poin.

W- _ (WI- N2) .

2 2r1 %r 80 (6.5)

T' e -- be= the Th'rmuln mur) V_=V x V which was found in Cha: ter 5, Sr- 5 ;znO

de~-~.e~ hevzrici~- fa th-ee-limmFicmal flovw field in a cylindrical coordinate

s,-s* en, V= e,V, + eVe+ ,V,, -3,,-.4d s in to 2 m-V xV:

e, es C,

v rv -~ - -2- ej _ = ,FirVOr. iea rO a z

Tyr V, i. or w- e.N. + ejf + ewu.,, theref ore

+ +: Fir. 2w It~ r8- .i2 OrVe 6.6)

~;~eE~Ca1  r- '-P'.ivs f are equal tc zero, B:ides tj, V X -'

the~fz '0'1~a 00 7=0bohoua c c. If one is ae-lIn :, ith ar avort_-c!71

no'ertla. f1nw 2 -0, tlen, It i4s neoesf.a_,, that 20, =0. Eeuations ((.5 Lx (C

'""'the -e± t"-r~t arfe e l "ree vortices" Should confom, tc the coneiticn

loc- r-'or~s ofy liquid ADMI as vwell.s

V(V __, aV, -Fig -,6.1 ()Of V, -0,

'' .Or AN~

theref ore 2LE -I 0, o(,V,) -K (6.7)
49r

* The r-4thcd of anl~'of e,1uazt n (7)is 4iffe'-ent; howrever,,its siL-iificanCe iv.

the Sfrte -,? that of eeustion (6.1).



see 3 Free Spirals and Increasos in Intenzity

F 6.? shows a balanced stable flow state of a micro-mass of litnuidg A-TI,

b-twem.n twc flow lines, 3C and AT), in a two-dimensional free vor-tex- flow field.
-rre'uati-ns V,3) ani 6.) it is possible to obtain the vorticity

No,-j~i (6.8)

A. x

D
do

M62/~kaV

of !Uco-msq.of 
ig 6.2

P adial ~iiru f4iv-~s fLiquid 2. Flow Idne

o---~ ~~ f the rcro-TiasC of 11ret'-id = nae : r; mthe - r e

e -V /r, Pzr3, i'rl--nC frctir-r az'e gr-vit-9 the onl~y c+.-.=

r~f v'~5-~pres-nnr o. *-I can vr-Ite out t- Piljb~ii ernuati -' 'Cr

ee P17n- a rr: 5 "c~~

+ .P-d)r + dr)dI9 - prdO

*2 .- (dr -!-) -p~d6dr V'

Aftp= doinC some naninalati ems, and, if;noring the third degree tr=-ee quantity

(--drdrdO)

th-ern, we 7ot the ='3.aticnshir .-
&P' r (6.9)

tihe-ec-cev if we substitute the equation
I IC



-r &V into ec ation (6.8), then, we can obtain

PV* Or Or

The total enthalpy alonC the flow line, y has a dif-

the dj"e-tiateA ~~'n of h-at conter~t

Us wdi--dp, or ffi=T as
P Or Or

P Or Or Or

D~ue te this fnct,

Oar or Or (6r1

4. one t-ke- enupitie= (C.11) and mabstitutes it into equation (6.10), then, after

cert7Jin mani',nuJatins, it is mossible to obtain the vorticity

2,v.~ (--T~i (Crocco theory (6.12)

Fron et-uatior ' .It rb seen that it is r"eoessaz-y for t?-.e tct-2 enthaln, I

and heat cr-.te-t, st R !ros- liffe-nt flow lines to be equal, and fur the total enthalpic

~r,-ad~ien t (&*/Or) ar.z th-e hr'-.t cont&nt rradient (as/Or) to be equal to zero, that

is to spayPt, n 'l~t-- m-ercz u.nithermal" flow field, befo-e one ro-n nonsieier this

to Dr an r.~~ '-:-t !i: f:,rt~r~:i: ohj q. 7*T-~i Ve'i~

ent cf an cc:il -zLt1:r. ir .'>Ich th'ers are no los-ep- due, to vsis fetc_,-, no

heat Tcremqmt :4nd no hr, t t r n:fcz or ifrrtilof tcto-l cnt-1 27:. 1

Iif there Is he~'A t--nsfe= -,=re ent or conbustion or if there is viscous frieti-n in

*the bo'.n =7 lp,.-ers, then, this does not sT-tisf-- the conditions for a frpe vortex.

rox.evlrt free vo'tfones can act as e tn-dacai- -t which It is nvsF741hle to !W2u

actuial vo-tices. Free vortices and other flow fields, when &died togethert c!Rn sirn-

ulatle the situation V-jch Pyi, te durinE air flow tests of combu.stion ciambers w:ithcmt
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See 4 Circuaf erence Spirals

At the cente'r of all vortjceF' or whirlwinds, there is a vortex core with. a rad-

*q .hp ro',ton of li-uiel within this vortey core aroind the center 0 clepends

or. the ot -ticr of the lioii in indivifual 7ases, that is to say, Ve- ro. v Thi s
vor-tical. core 's also called "forced smiral". The external surroundines of a "forced

rra is E fr--- vc-tc,: or srlral. Cmrce~njng the eirnferertial flow speed of a
S-;--aK Vf _ ross4 le to say that this speed is one which is induced

-'~~ i ". ~ ~ cw'' 1. & c'te vot"lcor-, th t--

L-er-IP flo' c -' V r, i 7-ches msz:inir' - 1us, that is to say,

V. 7~ -4

I 2:~~~c: -He certe :eC2e ti:.:J

t-); o-I iqs~ioe ax_-,7Mur' Calrri't~ v =

'h ocncc=e iw'th -)h;Ircs i t-"' ti.

velocity, V-. alon- r; tfhe-efc:-e, it is

iation, a-nd e-air '.>)onhe ~
4- the form of the 011"e-; ~i~ ti;

~ eruation

stati;nc-i~ of-ss~ 7nteu-owdnso
free! Iot, rSnr2= adhesai

P.4 110 a

.1T
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temertur in t!,e sme situation =T if one substitutes these quatities into the
0

-ne'. . e-iumtion (~i)for a Opm-tain radius r,.R, to R0,. then, it is rosr'ible to

obtain

Trve 'c~~~hl Ty; maes r = a c ,st-mt, and ermloys the forrmula for

'~'~* ~'~"2~* '~ -' en't (:.~)r- 2rV.. , then

~_ I ddr pr2 P. V
Jr r 4*' r' SwY 8~ 22

P PCP-LL(6.15)

-r~~-~tz~ ~or t--e bo-mnl-- -7r the vortical core, B.1, is

Pa2 Po V2.~. (6.16)

T - 2 wK 2 gRaV. - 2wRIwf,

Ve rca -rT

I,, v, p IRrdr pr(Rl - 2

- P 7 V! P. -r pr 2(2Rf - r)(6.17)

At a L -n th- 17-- of t',e. vcrtm, whe-e r =0, the s4--tic r-res-sure is

00 POor P, -2(Po - ) (6.18)

~uati -- (C. 1") e:nlai-ns thp !,ct that, within the core of the vortex, if one

-t-kes D to be the verticp.l coordinate and r to be the horizontal coordinate, then,

th - 1i-tributIon of the ' if'erertial of stptic rressure (p- p) is the solid swept

out by the par-abolic li-ne w,.hich passes through the center of the vortexc and is axially

* ~ 'eric2 Ith --t-atim to the z ais. This "low -res,-u--e t-ough" is the cause for

thie el~e of a ,tirlvind -,nd the (coller-tion of dust and the suckine noise caused by air

bp-nC dm~r~. down into a -. hirirool, all1 of which nhenomena w- have inenticned before.



T'he eddy current devIces urhi&, are inst lled in the forwara section of f).ane tubes

are installed there in o,_rder to rroduce precisely~ this kid of "low Ppszure troufe"

4- oc'd'r to b-"ck in the surro-undine gases and the gases down str-ar and nake them

!'low urstrean in or'der to set up a stable ignition source.

Sec 5 Circ.la.' MdIies at the Yobuth of - E&dy Curr-nt A--zaratus (Dnzy --IIM With-

~ ±c o~c P -tp vzr'c jt wh~ch -:hoots irto fW !1L'ne ±-:Ir. 71h..

tpnT~rt~a! flol.. SrCdv. o t1,5se vo-tical j-ts, i-he rotatinc at hi -I- s.PdL in the

T"~n of aP. it r~ s-c-'ion, form ciroular vorticips si.-ar to t.-c~se men-

p ~-niI.II'Q-',:r. 7n.- "xcv prsurp ruh of er v tc:r

:r24e th 1 Iln fur~v. sa Z. -low unrc_-am p~ '-part CIf "e aZ:ia: fjo2. CIf -:tC-,

S r acz h-c- cloqe-' st-4.r- of vort~ces i'.:hich forr~ rotmd rins frc'

Cf t; r om-tic-1 c'2 - fror liier! number~ of c-zrcular 14occ-' -e

-cstuiate that we alreadY Ioov thtat the- radius of the -,h"~

uletion of the circular vor-tey. _r. if' we also pozstu>'_.+_ '-t 7-r-t C7

xt of the vort;ce,- me-ts- the Uiraction of the mirroundi"-c incomi'n PL~r ir, .-uc:*. a

w~ a ~ ~ -: e r; tVe Si01 tilen, -e -n see the situation po-trey,-- in Pi-.

71,e erent Iat -r (I h at -- Lnt 1", Irs r de ;t'nie ro-res-:or~s: t, diffc-r-

-ntiated lenr-tl' of a t.-' to point PI, r~s. Thrfrthe unit vector of the

tq_. T-t is (dalds) -Oi + coB-sn'. *If one takes R and use,' a c-lin -

R iX + i(r.ine _rSfl') + (reoS*- rocOfte)

* (6.19)

i~. .. R a-ta'+ -i2 i- r~S(f] (6.20)

a ~+ jxuia6' + krcosO' (.1

*if we use the Piot-.3nva:1 theorem f-oir elect zo-Tarics, then, It is nos-3ble to obt-

ain the irtet are of thbe vortex, ds, P-d. the dir.eremV ated flci- srrcd vec-

tor nciieed by it at point P £v. R X do, (6.22)
4v RI

J')7

- - - -- ~v - -----. ~-.-.-----.-----711i.



-~~ tI

T ~ ~~~~ icso- '

*e~ ~~~~~~4r .-- " +h~- P~ +th I-a -~ra coonCiiae - 6x/r)]. nt)

Tomake irte~r!tior. e72siert take the equaticm above win- Thangp. it to be

4 mr, [.jZ..+ (j + I)ZJI[fiz + (F - 1)21

Ii=SieOS(-6)1/ 2 i[cos(19- e') + 1]

X ~I + 2 ~cos (0-)]} d6

2

j7+ + 12',W i0,- 1
* I~ ua (I 9hen)

1%

henthe rto- -_ elu'kian i

r oc



"he vrious miant'ti-s in the e-uaticn above can be induced into the form of a

st _ndFrd t a e-u-tion for an ellipse

K(k) - 1 do

EQk) - (I- k2sin2o)j do

D(k) -j~ -do -

is k2Sin2aMj k

>-'-t-.r funct'onal tal'%', -.- obtain

J I d1ok ina

0~G -kdn-D.

is ew ofdo - k2

r'he integc-zJ. e-wnaticn 2. n be e-zc!ed as

1, 2F4(K - D) -4(i + I)E

-" - 4i(K-D) - 2L(+ )E
2wre IV2 + (~+ 1)2)JIF + (j 12

I, g -{K(k)2,wro [ 2 + (~+ i

*[+ 2( -' IE(&)I~/] (6.24)
+ U~ 1 2J

c:.r .d.- hrMi - -re ftLnCi~r of -r ar.C. UF' 4 (2 r./)r-m '
-enon-- _ riensicn- a--*a! velocity romonnt values can be displayed as in r:-able 6.1.

ii Conceri-C the v.'hole vo'-twc, th,- radial compn~ent of velocity induced at point

I'r car also be fijui-ed anccrdin&, to the -rocedure utilized above by' using the integiml

o f eniiation (C-) alonc th- cir-umf-rence 2rr.

4wol VwO- 31

4wre [1-r2(+ + 1]Ii+( )]

125



0 .2. '4 0.6 0.8 1.0 1.2 1.4 1.6 1.3 2.0

0 3.142 3240 3.5 6 4.432 7.091 - -3.345 -1.263 -0.666 -0.407 -0.271

0.2 2.962 3.03 3.283 3.095 4.081 1.336 -1.219 -0.87 -0.554 -0.363 -0.250-,- *.- .-... .-.- -

0.4 2.515 2.534 2.572 2.5395 2.115 0.974 -0.061 -0.351 -0.331 -0.260 -0.11

0.6 1.981 1.965 !.899 1.719 1.333 0.756 0.233 -0.048 -0.141 -0.151 -0.135

0.8 1.496 1.469 1.330 1.206 0.934 0.600 0.295 0.089 -0.020 -0.065 -0.077

1.0 1.111 1.086 1.008 0.874 0.690 0.482 0.289 0.142 0.047 -0.006 -0.032

1.2 0.824 0.804 0.746 0.650 0.527 0.390 0.262 0.156 0.080 0.030 0.001

1.4 0,617 0.503 "0.560 0.494 0.410 0.318 0.229 0.153 0.093 0.051 0.022

1.6 0.468 0.458 0.428 0.382 0.324 0.260 0.198 0.142 0.096 0.060 0.034

1.8 0.360 0.353 0.332 0.300 0.259 0.215 0.170 0.128 0.093 0.064 0.041

20 0.281 0.276 0261 0.239 0210 0.178 0.145 0114 0.087 0 064 0045

- a - - - - -t-t-- - -(,, i

" ' ,..o -nnr,t v.(2mofr) :*,' . .t *th'e r iz.t P"(N,P, in th

0 0.2 *0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0 t 0 0 0 0 0 0 0 0 0 0 I 0

0.2 0 0.183 0.452 1.012" 2.547 4.787 2.135 0.746 0.325 0.168 0.096

0.4 0 0.272 0.619 1.137 1.841 2.132 1.586 0.881 0.479 0.275 0.168

0.6 0 0.268 0.565 0.900 1.202 1.287 1.073 0.748 0.484 0.312 0.205

0.8 0 0.220 0.441 0.649 0.801 0.836 0.744 0.594 0.426 0.302 0.213

1.0 0 0.165 D.323 0CA58 0.547 0.572 0.530 0.448 0.354 0.270 0.202

1.2 0 0.120 0.231 0.323 0.333 0.403 0.386 0.342 0-287 0.231 0.182- --- . .' ° "- -

1.4 0 0.086 0.165 0.'230 0.73 0.291 0.286 0.266 0.230 0.194 0.160

1.6 0 0.062 0.119 0.166 0.198 0.214 0.215 0.204 0. 4 0.161 0.137

L , 1.8 0 0.045 0.017 0.121 0.146 0.160 0.164 0.159 0.148 0.133 0.117

20 0 0.033 0.054 0.090 0.109 0.122 0.127 0.125 0.119 0110 00'V
-- a - - - ,,

Table 6. p

T ria! Aon- me.icnal olocity Comnonmn t .oeV, induced at Point 1'

2 6

VAL. L~A ~ -



0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0 0 0.064 O.Z68 0.665 1.438 - 1.978 1.448 1.175 0.999 0.873

0.2 0 0.060 0.249 0.596 1.149 1.714 1.613 1.331 1.120 0.968 0.853

0 4 0 0.050 0.201 0.460 0.792" 1.075 1.158 1.092 1.986 0.886 0.799

a ... 0.040 0.156 0.337 0.552 0.740 0.843 0.861 0.829 0.778 0.724

0.8 0 0.030 0.115 0.245 0.395 0.532 0.628 0.675 0.683 0.667 0.639

0 0.022 0.085 0.179 0.288 0.398 0.477 0.531 0.558 0.564 0.556

1.2 0 0.016 0.063 0.133 0.215 0.297 0.368 0.421 0.456 0.474 0.479

1.4 0 0.012 0.047 0.163 0.228 0.288 0.337 0.373 0.397 0.410

0 O.OO 0.036 0.076 0.126 0.178 0.228 0.272 0.307 0.333 0.351

0 0.007 0.028 0.059 0.098 0.141 0.18; 0.222 0.254 0.281 0.

0 1 0.00!- 0.022 0.047 0.07 0.113 .148 0.182 0.212 0.237 0.25f

_ _*".- . -o- - . -

2= cos O'd19 2 F cos (0 - 09') +1*

Jo c i2 + (~+ ) J

x{ + 2F[1 os (0- 6')]t z+ (F --1)2 /

.- sc that ber-on, s a ._ _

""C- j_ i o sible to ob1 l;in

. r ..+ 2 F(2J - 2D - E)-
2 r  ( [ + (  + 1)2]$[2 + (F - 1)2]

_2, [x2 + (7+ 1)
-[Q 2F IE() [va/,], (6.25)

(- +
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-1e low untin 4', can be Tolved for '6m irter-tior. on the basis of the

-dial cornnon,-rt of velocity, V,,, and the ay:ial component of velocity, V as

oCllow's.

-r I.,1Vdx + IrVdr [m/](6.26)

F-irst, i4-teCgrate 'r!~' 0 to x alon&, the aw:is of smetry, r = 0; thent at a

itt±t, 7v:, it of-or- 0 to -- alonc '{h- radius. The i trr:7.1 C' the fi,, ~Uan-
-. r~-~--~- .-~vo , 7-n tli- e'--*l of th.- srcord rroa t

rr, ~J (~ 7 {(k)

-[I + 2 ( 1);]E(A) I .4 ('6.27)
it -. A 4 1)-

-~0, tbe the, -asp flol.ptiy

znc ~t'o 1. r o,'ma0 flow: P.I- thie :±oof ~mtr=0, tc, be4 cPh F'

Sto 0, th.-., ome car i: -;e7- te thenrt of eru- ti cn (C,'T7 Pan7 c'-ain

(V+ (F + 0)9, 1-Kk ~) u's
2w R )~)-E

induced by the surroundings of the vortical co-e.. ri:t -:or'tK- X'

thyare VP:: s'ni 1 , ~O not have "a j , -.hich a-e ec;2'Kl to -"o - :'eore, 2.

C' lrq~ V - e~ -3 0, Op nd 1: 1,p in ord-e to solve froz thie in:ucerl

f'~ 'z~~~ '~( a hens it is -nos-ible to mu-ose t1ht -,he vortical

-ros r~'ot~-s ~ ~-'o-_-~- h~:'tel cr-criaRt,.ms, (&-/P), a-a that th-ey are

-' air o'c'ilr r1 'r''c'ie Ch '-,P '-c i ' -- '~oo h WC vcr-

tie,?q rmt-hlly induce achother a's follows:

.t ~'c nrce Ln t>lr ,art of tkhe vortex: '-pre i m?,t' aa ~o speed

1". [mb] (6.29)

~ e-'~a~s te '--t ±-P, *~_n if one is ccnsiderinC Eps-s ',.onletcl-? at

-t, if one is t-hr nte~'is of the vorticl. core, there is dism~'acemnt in a

7 S, _ flieC-Lin ]n thie x axis (the fcr.d coutnter-current flow of the suz-

rC'~in~~-' :) 2 a '.'-locitY V1, " he-efnre, thlese vortices are not oppable of

being Etabl- at a fi::r rnosition. If, however, one is co-cemminC- himi-lf with a

unifrn. f I m., field in Thich the co'inter--cur'-ent flow speed alcnE: the 3- a.-is, -V =

- (r/4wrg) ,"-; t'ncr on--iti-'n can. bp mirt-tinad, stable Sand tmrnocvi:nC, in rela-

ti-n to t 4 c ?cti- core, n'nd, in ±.h-is casa, stq.ilit"- of'oombustior. ca-n be m-



!-' one Is consi-derine the %,.hole vortex, then, those vortical centers along the

c rcurfLfernce also ntually iniuce each other, and, the result is that the speed of

the forwa.rd zis-rlacrnent of the co-nte=-cur-ent vortices or eddlies must be consider-

abily faster than w'.-it is the case in equation (6.2Q). (Refering to Fbdro&,namics.

Lamb, 6th ed. 1945, p. 2141) it -f*s possibleg on the basis of the equation below, to

'I.,7re thre sr-ovc -- cclater-curent flow dis-niacenert in e,-Ai-es:

2wr, the r-Zius cf -..h-? vorti-czi :>.

Thefor f i~\ ,s ~) s*how,.s the dzra.wing of si.oundin, gases into the fo..
of ar ellis-dd szhrere b:: a s.' r9-vortex.. Accorinr tc the ref-reznce

vrc-te-- I c,- 1>sc a'--a ree'v +Z.~~"~6'ic~

11-4., -S t-rae, t>.In, teintrr CX'u ct, 4-1 1~ 7i -r -t'e a

what la"Lre= tha.n 2.00 1 :* I* it f- smal Ier than t'- 1
C#

will be s-itleezea Per, ln' ~ i

Sece ie V~~~

Th~ 3e2~n f' maK~'C r t '- -it P'tn of

_0~ of -' frrrze is. -,3- a ~-rAvcrtez-." 7n_- -- 'cz-Ir -

r or 4- f, centI=_-etpl :"_diJl flo. v ' I

"~e-z-r~c '-trihv~ s~r nd ff'ussprs." Pji .; st*r tha.,...

itake vrnes. th- rle- -- c~~eh~~ or "fish scale h1oler" t rc aracn-ein

-~ ---- ~ ~:~ '.i 'on-- t -~rc~~ n - n sf thd - c

Iline C,' >- ~ ~ Y' of the snr=-] line a'n7tv rus

V r- ±:.l~ '~'7."r Jir 9 friction rilates" a-i i.in' ir.C around the fuel.~~

tihtion pn-ates rre-tn violent whirlv-Lnis. Tec-antro ~ ul~seoo

u'te r =7r VIn or' ' t' thea vertical core of' soliO -ct-'ticn. en±

_o-.-_t_;on r-ed, n = ?CJr%,then, thie tongeential1 velocity can re-ach V=
m

as160 n/s.

Charter 1, S-e 2 t-I'-!- about the 'ant that theic flow. speO O2.rectio- is the nor-

na. line of 'he ntrta line v.'hen *=a co-'stavnt, In two-dinnsiorpl five

1iej-s, th1o ~ ~u .a constant a-ez the flow rtmvition P.= corst-,nt a'-e

129
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both netc- of curves that meet each other at ri,&,t anC~es, that is o saythat the tvio

t-?n~te-nt lines at roints '.hpee a-nd'# cross are -me-penlieular to each other; the-e-

X-ore, # and. a-e ralled orthlo~xmal functions. Ui* we use the complex v---iable

Z-(S + iy) - Tel*- r ( cos+j~

*an the cormpley fmacti4on -() (-+ iy) -F(vre)m.i

to sro:teIor'l c-onn?~ctcn 1  c' a f~-i~ri~ l ow fi-d, then, it is er.

~Th-co~~ ~.~sas wel' - t'- con-ler - wriabl Z -£+ Sy re

* a th v-v ~ *ic th'-ar, useA for eira.017viously,

-=1 -- , a=W (6.31)
ax a

Fg6.5

"2~~~-~ i~nvortex"='Fe Vov't.x + Poin t
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if one 9ar~yses RIC 6*f , it is iroible to r-one to Itnow that

OF JF &Z IF OF dF OZ dF

OF _OF OF .OF.
O 'x' rO6Or

OF 64 + 4 j-OF + nO4
ax x Ox' Oy 6, Oy

~4' (6.32)

rill. iat~t 4 n erjuatior (6.3 ) f-ron the Mo-.nn Is!-

04 Or'PI

Ox CdO: ae

741ve Or

- (6.33)

i' u~ cr, t>, ~ ~ sink" rnntrj- tal flow alont '-

-pr rc G r er-V rcnG--jnt; if one alIso ,'eco--izes that r

a cotn,, tlien-

sources:

G
2sp= a corxsta't C, and t-he alrLe7dy Imown amounts of lowg G

and p detrprriino C (6. 4)

!.ccor--irC to e-.-i-tior (6.,), f-ec Ivor-(ons:

rV~ r
2v a const~nt K#, and, if we alre-ady Iomow T then, it

is no:7-iblp to dete-rine Y (V.$

171



if vie assune that the cornrdex finction

F,(Z) - -CbzaZ -Cln(re") - - C(Inr + iOB,

"lue to this fact, as far as the "point po, V" is concemedp

jts notential functian is .4o - -CInr

-fts flow finmction is 0 1 -C V36E)
-,F I c 'lt 4, fe 0 f ±~"~rtsink",.4,, a constn't, i~=a

F2(Z) - iKInZ =iKla(we's)

-= Iin r - X6 -. (4 2 - 0)

c'-. n .K~n r,

-'-I~~~~~~~~~~~~ -V C--"~'1" - *"- re,4aacncstait, is r=a

-. nc* .Xc x>.l ~the flow

4,j= + 4,2 =--Cf9 + Kin Y (6.38)

To r8 0 r-

2 -. (6.39)

Ki -- 11Ri CO +Kin r

~c~--;t - f linr',t," of th rr~a-l vc~in

r RICK(6.40)

ati -0 i.:fO s -l-le q l~ih~.csi~1 or "isc'netric s-n."rruation. If

one alrepad;: 'iovw T? C Pnd 1:, theni, iq is -ocssibleg ac'.ordinC to la if+E



to consult the t;.ble of natir '. loga.rithns and, p~oint by successive poit, to rlot

on~t the flow line. The neculiar characteristic of an "isometric flour line" is that

the normnal line, n-n, of the points of inter!section such as M and M' between the curve

and the ra--;ius .are enial to the in--uied an~le, a, of the radius (Fig 6.r5). Because of

the fact th~t the cir-'u.nferential flow speeO of a fr-e vor-tey, Y,, formis a reverse

7-rortion p-ith the r aius, r for a. certzin =Ziusq e the critical SPP-d of

soumd

2w 2

K~~~1 r-V --~$a

to r = 0, V is at a maxi=u value, anc'7~ 2.15, then, 2.4 0.408.

'his -- 7>--~ -4 -- 'vthi 'lip circ-mzference oenpr"-toil -.her~ t*he radius, r,

r, i - e-tre-o nimr vatze, ; C' cn' there is a true varum i the irte-val

:,,c2ch P 1, hcti12 p-ig, one can sep te ~ _ ~ 4

___ ~ -- i. I < 1<2.45. ---'i'f'-s2It ath -fton, ncm't-

flw -ci?1 -.- --- i- -'lum *-r-- .*

ence mt R, is al.r-~r -'ovpe'-d or -rotected b-y tlne jet nozn--le in the m.iddle of the

~ c ~'ie z ~' he ''r roq P.etior of the a.:is cf :-ot-ti-- of

i-n. o0t ' 
4-1. Re- ~ ~ '.~~it flnlk~'zor alonr the r.-ne a::' S

al Il t-'no r-t of thr normnl flow.

-' '-crn _c -'%--t n-)r')s," If one considers the I-et th-tA i±,p vv'.ries -.--th

chn--ir rlo.*, thr~n, the ronti~nui+,, erniation (6.34) should be cl-.n~ed to be

PvV,... 9GJaC',VT. -aM; 8 speed of sound (6.42)
2w

The :lowp G, can be taken as a control, and, on the b-asis of CG, it is poc-sible

to choose a nors-nt C' -paRvm G the Pin T1his e:,pression is
2m

15Z
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the : 'us of the "sonic circe" .:.hen one is onily conside-inC a free vortex. P*

and a* -re the stagnation density and the acoustic velocity of stagnation repec-

tiv-ly for the s u_-frour'.inc environment of a free vortex; Y = the loca2 Mach num-

ber. T)ue to the ratio between point sinks and .radii

_ .
X 1M

'- -- ' -"

. .. o -- 7 ' - _

f . 2.4

[1.2] = 1.728 (6.44

k +

k-1 -
'one obtains (-L). -L- )k k+ I - fi,, k-- + 1

+ +l

the flov: sne-d of a 7'._ ;e vc-te.: ir F l o$ + V2;

. ." .. .... (6.46)

ia:

Or n
V2~ ~ (L)2+ ) +

V2 (k) + ()2 p4

(,r thF r sjs 0f t?'i.S one n-r ort-."r.

,, the smaller t"e -- dius is, the -ster V is.
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* r'i~t~n (.L7) s a sielnequoation that takes into conside-ation ehang-s in

*If we t)ethe sr-oare cf th-z r"i.ius of tjie soni4c cir-cle for a fre'b- vor-tex, P2

an6 use it tc elimnate- a!'- at once the various riuantities in enuation ((.7), thent

it Is -nose:Kie to obtain the sncUare, of the rentio of radii for a spimel line or skevw

vo -ey

5j7 __(i) + (+ . (6.48)

2 k +

(6.49)

.. nen~~~~ -' .= ,te ad iirt' for a sninil line or skew, vortex-.

I + 1.7282 % - 8a 2

- -.s~~zsI.;t the r--i-us of the s-onic circle for a

-~ ~ i -__ rse,, vc: i- e-r -icet -e of the zndius of the ?-cn--, c rle

fra >-ee vrte::. I ~r te cit the? tncentip.1 velocit,' of tie fue2 i"eir

-- ates, Ve = V -nd -4r~ order- to '='"t~T-ssfor obstrL-I r' "k, -lo,,- cf

'ssfro. be i-C e-cws-Fively 'e-. V - - or the ritch i5 -*, e

sej C~4RC -
-~~7 S. -'. C ~ ~ 4. ~t-~~ ~eh's f te ec:-'~o s

1a.3 -T 18-3%48 18.3 X21.9-400[m/ul-V.,

"h = , Or~chin ~s~od the tanggentia;Pl velocity to the Pir =Oeezce

** Vom 160' (!n/s) v, Tnthe. '-d-up or thne ruel dipsnmser-

R, 160 x70 -28mm.

400

4R, 1 fmm.

see 7 V!i-,:ou OurentSr'.l

i- ft cnP b-C."Lue l'i--eI !-vp a Visoosit', prd a vlocilry --radOent Oulby,



'~~c~P-odunep' viscous shear stresses, r , that a_ rotpation car be woLm aeotuc tc
!'oma scra r vortex. Beccuse of tlhi s f act, actual vortices and. sir! .s are all

vi_4scous cpi ,r_2s vortj ces. An avortical. -potentialI flow free vortex + a ver-tical

core of sc7.id bo',,, rotiation = a cir'!ular vortex; this idealized, apnroximate concert

ori2y 4i-res vist-osity.. ?rlyctical exp-r~ence shows that thie tanrp ilVloiy~s

trihut'-n alon- a nz-Rius, r, from the center of the vortex is Ve = f(=') and t'hat it

not~' cer~-.l" -,± im r to th,, one shxwn in Fjr (63'1'; , h,: ci=ro1'rie-=-'c,

S12' f vort4,!I' cre, there is a "Suddeni and -- en a

-I A. :f t -. c. -VXV o

'r-'i iq no ?en; moreovezr, it is Aiffused into the outer e'.vircniment ovrer an

Sof dtr::t1, t. ?-1'is -4s due to the f?.ct that the enerm: losses due to viaz-

CWIr cai t "~Crticz-" et=C1,th of th o~- lrVortic~l Masses (als ca 2.?_

r=,lat4_n tc a7~- l- 1-ruate r~ it c~uses the vor-tc:x t,: be dic-per~ed az'z

ne- inute -rrasatirr- vcr-tic~l masses (that is to say, turbulence

'low or-rm atiral structur-es). 7Ih~ is called the "vortex disirat 'n axnd break-

o t-,rtu-erce for-m."' Lo !:inv t i th's roint of vieN,:, the bas-ic nature or

-ubs"'-nee of vortices and turbalence flo-,.s is the same; it is only the 7ine of the

-~ I- ~~h.~j--j~~ ~icha~- -- srent. Because of t j fact, turbulence flmi

44
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* -- 17P~eri' t'he Tneta! Vp'ori.t7 flistribbution of Vjiscous Floy' Vor-ices

V -ti& c -C-

T" I'n - ths? 1ilor- as he un"t -rf mass, then, the xLnit of force should be

(' and, t~n unit OP dersity; ,hich we use should be (k6/m7); due to these facts.
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t'+I "'-it of vlsccsit , is u(1f'rn- s. ard the =mit of d-ynanic viscosity, v, i

(rn /s). '-!is Is the same :? the uni~t for the coefficient of fdiffusion, D. BecausBe

of this fct, the cur! or vorticity of a vo:=te,, tp because of the effects of vis-

coq-'ty, is capable of diffusinrg out into the surrourninC envircnrent by tr:ncferancc,

Rnd the coef'-1ciert of this trpnsfe= = v. kccor,-i%, ne to ame~hod in Charter 4, if
one -v-esues a Oiven volumie, 'V s in a viscous vor-tic-- flow field, az on~e alsc -re-
sm. -!s its closed sur~face, S, and th r di ent of the vortLicitr, , rcnC tile cit-

idoe no~pa2 line of the -Ur-f -,ce, gmdg then, ir:a u.ti,'tdi

-- gh~,( )dS (6.50)

v - 1F .~l"(.1

a 1- tion, dt, thIe vorticity '.-thin, V is r-educed to

The vcrticit' pu-t fr-on V sis enual to the -eductIon in vorticit, within. V; ecuations
Sand (6.51) ef'ual '?ch other, and the ntegrands ought alIso to be eryal.

if we -rpuirne that p is eati-l to a constant, then,

le .(6.53)

2  +6

aa

Cvn thep initial :,onditions: t =0 and circulation (vortical str-nCth)r2K2R.

t ther-, onte Cots vortines a'ai~ Vith.e te-rArpl .ditions:
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aUnd circu:!aticr (vortica3 strengsth) T-0O, then, vortices attenuate, dissipate and

bekup; th,- boi.Oe-z-- conditions are; i - 0, id- the taneitial Velocityq V. - 0
(F1 i; '47); ,h-Tj -1, then, the tengential velocity,

P rd , .!nen F - oO, tl'enq the ±.angntial velocit, v,-*o.

Accorj!-i t to a method emrloyine similar par-uneters, wh-n one solves for the special

scl-.tion izch ccnn~to the ccn . t-cons strte above, one finds it to be

KE (-2 -1) L-4, (6.55)

cut.tirlice- ,- C-rculn~tion aro=1' the r~a. The Pnount of rirculaticon in the

r 2.rd, _r 2wrdr

- 2zK I 1C- (6.56)

If one asz-xn-- that the radius of the vortical core, jRin'/ r then, ;..v/R,.

~~hi~~ coro- Clct the rules goven-ing the occurrence, develcrment andc -attenuation

c±:-y that, --hen t >,0 j the vortical core, 'p -4n.n fror, the
heart of the vortex developes and ex-ads Ieas ofvsosUfsfn±nf'ne

the vcrticit:."osite fron th.o interior air flow layers to the exterior rings

also, sin, 11. tarccn c- mr~:i s: and momien t=, inaucing thE- su ziaodinE7 cases tc-

rot-to R K r!J1ccre. !-' one is de-.linc with in ea':., t>-,er, it is cana-

bl- of attr et-'g, tbc- '~eo-.t-n to flow unqteen. If the sr, .ce involved does

nc t ~a f-- rc,' a 00.~~f, ,*.n,-o1,R- are~ the cInulation,
r- 0. 71,at irs to c~ the Cases move ir. an avor-tical. rotaticn. I1 we Co on the

'h~i tha r-23rV., , then, fron e-uatlon ((.j6) we can obta:ir. the facet that the

I - (6.57)

Acrin~ o -Pe nral.-Sis tha~t we ha-vP ;cne in thi-,s secticn, '?le edaies ir the
er.~c±o ~ ~~cfjoiw -1vics in Sec 5are ret d't!+i-n-a7- :'-7 uncliadnim; on

the n.-rr;,teya- norsta "ty being :-oft.ced, L.eveloring Prd. attenuating- in a

rnee s of siitc-eesive -'ene'.'a ard degener-'tion. 1-ha is referred to as "stabae

ecmbusticr" mnust necessar-ily depend on the careful coordination and adjustment of*

.4 138
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* !fuPl ncentrtio Ajstributiot and "tchemi~cal reaction o-ocesses" with the process

of ievelormernt of this ed~l in m n and time. If the eddy,% oz, vortex is uxnstable,

then, the combustion wiP-' be unstable.

Sec 8 Axial Tuirbulence Jets From Iayers of Spiral Flaw

The- n-th ":)t-.v-en tw.o layers of spiJrP or vortical flow can be seen as being-
t -11n -- 7f* 'I~ A-- je ozzle 21 * ?e two-dimensional turbulence jet put out

r--n S -aT e-.8n. aC'

via.A

M6.8~.

* ~ *§ V citt~>:f-~- ~ T~-uinns~nalTu--'-bulence Jet Pror' a

7 * ?at Jet T: ;.::C ~c: e y~~~ S-'C :o

A.r P e e outer limit :Lpe- or y~v je.rC-n~~~ e t~e i 1'nMr l*t

linrp - - -.. The two outer linit 1lnes, at*t-e morth of' the jet, '1low toz=c.-

ther ar- ne--± nt the o~npoirt" 0. ' ie tri,-nm?la' area 4-side tr- intF!-cr

bovn 7p- lines is called the "jet ccr; ." 'The a--ia! flow speed 'ih he jfet core,

.1. o-! ven are~ incl-ar-irC -n,5 is, ecu--l to th e axia7 fl1ow speed of thJ it2:k. r
the h--c ~~infrom e-m-tl~tth 1t"c~r ~~~r th

to the ipt nc-le, h,= 0_"1 (b /aadtelnt'o hecrs .Z(/)

the exn-imant: l constant, a = 0,.0.15 -027. In Cener.lt s~w4 -5 'limes b.,

* See "--z 7o=4~r§ Di Pa -ramnn. Co'irt -"ir-ent "eal ,e ind Bd -"t A-71P"

()If we PI-on-ly Tmow the hei~ht of a 11'at jet, ?b , and we choose tirc consta:-t,

a = o.15 -0.27, then, an th- b?,s;s of emu-tion (6.51-)1 we can ficureP out h and r I
C

and we nan 'Inn: AhU exero ' -'Iy lines v; thin the two-dimensional turbulence

jet in Pic; 6.o3. The :i.s of s:.rretr7, cuts the jet in hrlf. If, alang the axis ine,

1 . . ....



we out out a cprtair numb'er of sectionst 1, 24 3, 0G..9, i, then, we can meesure out

fromn the line of the w-is to the Lnterior Pnd exterior boundary lines the coordlinates,
b, 0 b *...... as well as the thicknesses of the botmceaz7 layer of the turbu-

lence flow,, 0, 'Y.1 Y,p

(2) We already know that the cone-shaped thell in the forwr~rd etinof the

flam e tube has a m:imun inner ameter of R and a heri-pyranid angle of 0. We al so
aire-.dy 1-inow the etenmal dliameter of the vo-tical flow device, rjq and the internal

'4-2-,rof tene vortIcr flow dievice, r~g b, = r- 2 ,ten~ne f voxialfo

v'zi: i r. ti vzti1i2 ,o. aznle is *4, 6-4), an ohtese quazrt"CIes are

I~~: iv:a are the. ->.__-_es of -.--e vane blades, G , the amc,,t' of irt~kct
theF ov ir~ t.71ke t e.-r -tu-- -rd nressure 7'.nd the ax~ial flow speed coefficient,;,.

if * r -1.. the jet Lloi: smeed of the ring-sha;ped rotation at the ex-haust

-e 7,C i o ca"e~ 701 -!n idp If u- into the ta~eti_2 comon-t of
- T-, r fc =.i' - n e,!dy Pn A.) the az-ial flow sp'-ed, W, whch forms a

~-- ~ . ~) ~'-~-' -~ ~,for :-'ts a,:--- of "yr ,ty ~e iwall surf c ci

'I fve~t c rc'%_-fe__rnc of the e--haust of th~e vo-tl-l flow-
reieas the o r _4-t- Lnoant, rn! if, on tl-t Iv'.s~s of the sane scale cf vn---zirement,

w.e tahe I~e contour line cf the i ~T ft'-e f~'-~secticn a--.. it . -

C_ .3e .3-* 4 2# the n-P-l li"pF of th vnz'ou -cntnn -1of

*~'),'r ~ e ~ r"-~dc':trN b-Ctr t'r eoor'e of th erd-
---------------------- ' 1C

~~~~et ~ ~ ~ ~ i-. -c, ,~ , .. ell as 01 L., ab... ran tr7 n t cr.~n~

7-z ::e- Pac r07'. =,C -v.:±.;t _e ~~ts of these L., y.), ..... c---rdnatest

t: ~c 1~-r'~ L'- r. -~' - o' T at the bot~icar of the Pr'-~ of cc-nter-
ou-'lt fLo%:, W=0. Th nf re-scn for thiis is that on the external bou~rdarr line of

-cn-~e fl.:,~<- aW' ~'Lyit-, W 0 (ic 6.11).

~ ~ 7' .*7 1~~ in ct-an and Section. 7, i ~
u '~.s rC F e-.y, =C.5a, t -en, that sloulT. be rc~sely the maximum red-

iu e rcof conzter-rur-ent flow,. '-I-e botna-n line of the ar.:-s of cntr

cu-r, t rlcN, is the tr-cl: of displacemnt of the heart of the eddy.'

"be vector, qq for tho rLne-h-pod rotational Jet flow speed atteeh tof
t'-P vo-t!"-' floi- !Pvic-- 4'ornr nyvrbl flow surfe-ce. On- an x--y: plane, t)his

~lo' urrc cj~-t+ P, eiirve- a- -1o, ir PIC ".10. F--or. F- 6.9 it can be seen

.4A
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c4

of ah Us~e ofthe~. T- n-ar 0or ori~ 77-.ni of Phe Semi-jet FlowI= h paalle o

area~~~ ~~ of az Iir~:eo flo Coma ayra~s oti~ flo5 f9ld)

cz~tercur-~i fow r~,a~ ~tI.Lnse o'in ct flon r, in tod ec,r -

aucio whchnro1ue rlon .of' th ia ressre C- -,-e t f £oz a(-,w..ltri

aor-crotfo aroa bon n layer, an- its rhti re ai ei ar td. te II-

to vortical wraXes which are also cplled "vo-tical rolls." r, and r,~=the er-temal
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M6.12 *%AAtM

FjC 6.12
% Aijr Flnw truct,7- of the Por-.-,0 Sectioni of a Fla.-.e Tube 2 Jet Niozzle

3. Vortical Plow Device 4. Vortical Roll 5. Cone-shaied Shell

andint~al~nn fthe ri-c-h' ne -a",* of th-: vortical flow device. P.= the

e zfx thc czne ch.~ r-- I. 4' = half of the angle of expansion cf
*±~ o ~~'~~chis r-roxiinatelly eriip2 to tne pnegle of instaliation of the

- <o~ o -r. 's. 1., to tne disac -,rt~ rs :Ction 0f 4.en-~~

:a--r a. -~ ' trorent fl ow arna. to th- e:-haust of the vortical flolw.

t.-' rHist-rice in w~hich the symr'ttnal, marface of the edd~y enters the

--i-i~3~ t4cn; the P is r-er eally A2 omm . R= the intemnal r-adius of the
I oreara section oc' the flane tube. 1,= the distance fr-om the syinetrical sur'f-ce

of the e'5dy t c the eni n-rt of the area of noun te-current flow. L. = the length

a* t-~r r-th amc-nt c*f irnt ke ,c o' t'-e mair. fuel holes. n= panetr---

ian denth or the np-n fbel !-ole ir-take. amoint of refl,.c flow. The rontin-
o-~ t~~-~~~ij~sources, A and A, are cp-able of beine locatedi in the

-ftehudalyroftbtubu ence flow close to the vricinity
of t boe'n"'e:- O-r t.- '. O=Cr-.currertk f4le, Pnro--imately 2O-3Or ais-,ant fror- ti e

e::1h.ust of +ne vortical flwdevi-ce.
After one ue- the semi-jet flow fiold t=,nsrosition method to drai: nut the

boo-ndaries of the ar~e of cotinte-current flow, one already kniows R, =19 Pq and

4o, and it is possible to use the exnerimnta! or emirical formla set out below

1V3



to corrare anv solve for the rnacimum diameter of the area,- of COTMter-current flow,
a.,an' it le~th L;cor'arn~these (Ia tities to ?ach other:

11 amR + A 2R mn JP, 11 2.7Rusin 0. (6.60)

'he len :th of the ar'?a of rcourter-cu-Tent flow

LJI+lm(R-rI3ff#+A+ 2 .7Rzin (6.61)

ch~q 100. if t he'n, the core ar-P of the half jePt be--"en the

7 ,1cthrone-c-hanp-& shc-l: f7ni thie exrar-sf cr s-un I'ce of th- jc-t 3-v

a rz- zcii~e:Te to- the i~ eof aonr -- '~:tn nd "'

rnl,7 u7- _ -arc tube canzs 7, t .1 ccre- an-d zclil2 ti- -rr t.- ' c.--7

c rr-'.,uc-t io. of ash ars-i md, th~ o _4 uXf-rc~ tf t t 7- -0. ;S

- . This thl-3- be ±t'h4 I' c -i +iz r - ~ .c

of o=y-en fuel anO air mixt-ares thl -  P-' a --ady been bu--ed assure contintcus cco-

-ci 4- I~fr-T~T throu.0h the r~~7- ±I anI to the 11 area. Senar-zti on vo-tjces
:~o'~al ircu-tin; 7~i.to czr, A ard A are di,.rnlaceddo.

the I-r,~: -ath, and the cizziriferemee cf the jet non~le stretche- ou.t he-hind -.self

a section of -071,~~oe 0  ~' '-' u '~ Tt:e 4~

Iraee A part of the fuel var'or which .s !'ht Cut 'ror. t'-. Jet, wit 1-

sna> K iind, is cracked in a co-inC 7 rocesf; ar. congeals to beccca

1:in o' "cr~cn crulel" which chan&es the aw&le of the spry. in order to nrev~it

the ovr"heatLnr- and accumulation of carbon which is mentioned above, it is po,.-

sible to chai- the cone-shared Shell into a hemisrhere.sha-oed "air flow caidc",

open small hz! 3 in the stz-face of this Cuide and op-_ F_~~rc

*irt.kce h.lee --n the toy mid of the flam~e tube (for e:an-2e, thc fcnr',a8 sect,::' :

a turbine jet 7 is altered in roisely this manner). These small hole riot =nI,

-)rovide a Gu-7lementarY Thr,1 of fresh air, but they also blow away the acmimula-

* tion cf c7.rbor at the sam~e time,

:f thp totrq anolunt of irntrke -for -!ch flane tube enuals G, then, -he &anoc-nt of!

--ases -as din,- thrcuth the vorti cal flow le\'ice ar.-I entprine the initial level, Go&

G ~ ; tl~e amoil't of su'-lement- iintake at the tor end, G, Io%G ;the

arnont of cotr't-r-currpnt flow in the maiLr nomhirtion api-rtures, GQK(S - 10%)G.,

if we fi,-re that G =(0.4 - 0.5) GC2 , then, G,~ = the amolmt of secondary gas intake

entrig 'mtile nai c. mein n-!ue The rncirle ! tha te oveMll
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arnz'wit of 'inta.ke in tle riair. rnobustion axe'P of the fcrwiar3 end of the fl: .ne tixbest

+Z + (?0- - 707') G, -;,hich nauses, in the area of main combustion, the av-_ra,-e

-'offi-cic'it of --~iOa2rs, 'at to be rlightlY 1a:-Cr, than 1.0. The courter-cuxrent

'lov Fpe-l or the a:is line of the cotmter-cunret flov area ris capPble of being

ec 4 imate&- on the 1- .-is of ec'uati n& that have been pcviousl. Iruzef one

vcsi~rc the c,se in. which ThIere is no aniotuit of surplementary gas cominc from the

to cnec ( 1  ) 3La hr is also no amo~rt of secondary intake cas i the main

~ ~ 0); tlhen, e.ue t_- tho P~'oe't of ed i r- uctio-, .K area

G* 0.1IS8(2R)Iaialdi - oW. fkg/sj, (6.62)

G, G?, + A-) 1.75 '+ O.75dt-Y4

f +6

.- ,C - -t..0 .: e . -

ted 7- mpi ~ 't h 't'- T.- a' "'

urs .'- ~s~z~ a-nt C f r- s,. 2 tine S %; the- nnsj'i'- c' the

~rs < -~ P-c ozen~d sor~be at 'I12c t-_11 end -oint of- the coiz't-rcuz-rt flow

~- -4-'---':;tlho_ :- ,cf et"'t-t>'tn hcr2O 'be Hmao.6R.

-.)fl P-n-7IC "j---'hin <e vo-tirr-l flow: venen of 'hr- vctor'

P ' ~~t, pnr9 . e zct~rtior cf the' riC-shared jet is too s-=g then,

- ~i~1flo, !:p'-'d, '..p ir- too 'ou, tho- anount of int-d:eq 0 is too small, and the

co,_rter-cur'-mt fClov arep ir too lonc;. In this t,,-e of situation, the-re is ar exces-

c: ~ ~ ~ l ol i:fe i re an d a scarcity of oxy-gen in the fovninM po-ti on of ',h- fisme
tubes; coonbustion is slowr; flames are' lone, Pid efficiency is low; howeverg this

condition is useful for relilition and r ~oditions of' high altitude and low pres-

.-rare. In genieral, 4' should be chosen so that it is lest than or equal to 600
Ihe conic an~le of the jet vapor from a centrifugal jet noz--e* t oucht to be

nomewhat la-rL-er than the anCle of expansion oI' the ar-'a of counter-current flow, ,f.,

', ,



"he "vortic-2 roll" in the wake of the area. of counteT-curra--et flow comes from

th- fo-rrvatic,' of a lt'If+ tenpv'raw-ir Cs flow in the area of violent combustion ( the

Pf1h ZC %' o 7r i). if thr' ie ts fror the main ccnibustior arertthires and other holes

~~" Ii" t:17n to *'' Cn' Cr -O a,~lt I f th'

~~=I tl ir -v+-7 rtrcnC, a-9r t-- turlmilence liffusionis e.

w~:; -~ ", ircr'-LI'le to r-nirt~in a hi& tpe -'-tiire air flow rjsht d ourn

to 47 evIaur:!t 1~±c~h-~ u, fzr 'nt s-cot" in the tem-e=ra e field cf

+l~o"~a,~, ~'~t~sis v'--Y ;-;-r';ct tc eliLrainate. The 'eason for: thi s canz also

Cz t? -C± t>-r arf-e of inst-21atior, 4' Y c' the vcr+ticrj.l flcuw vman,5

Cf '_-' i.:'' is too, T-Pc I one i-nsertsr a lar 7e fur~el into 'he

to --*- ± on~iict rns-r~ in a. I -,; adirectior ( as, for-
L~ n ;- 7y flame tihe), then. It Is Dossible to ;ush and squeene the, eddi-cr

oc~ai bl ow apam-t =r shorten the vortical rol2s. lo,'7-er the =,ce'o nd inrn~nd

the teT~''fi-*el of t c:haust. 7he
of adequate dimensions in order to make model experiments with flowing water and equal Rey-

rol2- r' !IlreOY. -- ve to be an effective techniique. ',-e ou hi to ey;n-r

'i12. '-1 J" ~-r2~<~Pr. 11ust-r~t i o the !f .= of a rin-.>r ,

=o~r Jet a'' - .Z an; nc~, ~~ t th,? as a rco;hof act',ial a-ir "V.ow

Sec 11 Thorte': Et-Pn~th umLb,' ', P.-'d Tests 0or Potational 3>ts

~"-~ ~--:~~~ ~ c t t'- e-I.ezi 't -f tine v't.i:flow ievices.
e, Cr r.. C. '- -- 1,7 r I f!ow Crr nn -~ '.b2e to use these

-c con=trol2 te -h~-'e v2 'lm, 114Tdi-E-sions, +'heiz eroth,=-'ic strength, thei--

* eficec of mburIn~ti-cr as well as theiAr stabity. Natu.oll_,1y it is only possible

co acl-l-ve r72tisf-.Ct.y conbustiornaab. li ties -"hen there is careful adjustren-t and
.r thc conif! -1nrle cf N eit aaciair , thp atrwiit of sun.

e'-r s "rtake at th- tor end nf the flame tubes, \. the !positicnine of the

a--f:;*~crt,:!', thor -nc!r7.ti4-r de',tht F an-I thre amont, of' s-con"ar'; :- ec

su-~i'd. ~evrthe scone and st-Snt of these r-otational jets civer- rise to

a beiric inductinn ef.^ect. "-'re r, -4- of the r-te of flaw of the tangential morn-

entur of the rotaticonal jet to the -nte of flow of itzi axia1 MMOntum is called the
146



IIvortic:.l strenth nurnber' t S, an it rerr-sents the vortical strenth number of the

vortic .l flow aevicep,rlwhich is,

-me the moment of annalar momentum of the rvtati -. al jk-t
m~r2 the a&ial irnumlse strength x the radius of the exhaust of the

vortical. flow device

- 2xrdr(6.65)

r2 :PXw2 -2 urdr + ' P2xrdT

e)xIaut of tl;he 17O.-ticK _2: rvicc -'.1.Z a: az:ial f rl o, .,.: -

-ressur=e Np,~rct. -4in te-rs co' the p=-inci*ples 70-,e-t4g. t"-,ir _1iztr--ut-iCr

a~lone r; only h- these - ti d rn.i-e:ez: 1

i-ntec--ate equation (CC)in vrde- 'o polv- for t!' -ot? h
If one alr"-2d- has t-n vort~n- 1 flo'.;e-_-l, - :-
'ot~-ine -ve a-:i ?- "'l-- . 2-h"rttm.

its monent of an-,m1 ~pz mz)-mentun-, N e*'6. 32~
( ~sib" , to tclk a vortio0 flov. deeic- a-d.i-±

an to st2 pt an a7--rorr5;ptp e-istf-rcO cutr-i_' =hau'-t c-?r >-*-

* '-1 . - -r . .'

e P mc-h lq~t~ ~~r- _irerto ic ius-. to Ih -

-eio, -,, c--i t!t *-hcr it -r- tho r-- ttube, oes at-nr'
':k~ te x"' ~i' - it n jt~rctption-al mct5nr. I.F sne Thste

!-- cf ,.rcat!;r !'G'"~ Ln Th 7cr to be- b' l~c Torecr -L C,_ -

Ptaq ocne c-n inst-.1,1 incidp thne after r'ortion of t-,. rom'd tube, ferico-Z_.m'J"C
"'a_-c that "-onbet" hc flow, ma this elirdnaters the rcyn, rt.ir of h-'' cot,

1--n -u- BO'-t!-ie th- e-hatist, the abcrice of mny ty*re- c flow
eoct 1~ ,2;the , ret5? f2ow,.," eerll 'V0.

Cons±~lrinri , . 3 if the rtatilc "nr~pu-ej, , P.t the e~hvtOf t-'e VOrtlo'2

'Ilw&is is er--7K to t'-=o rressuref _ of the mur-J~Covironnmntal L7. s
then, Ap = p- C; i'hen this isthe case, the- imeul e fozrce, Itp that one rFsuXres,
is onl1y t*he -- te of -hn Of moneintm pe- serond of _L e s tclidswt

.4 e si olie,1_t

1WTI



t' 'e bloc]:inc -late. If one asun~es that pH'2 is a - antitr distributed evenl,., alcnCj

t=eraIlust r, theni, or the basis or tviat fact, the &-ial imulse force is

". f pW 2 -2ordr - pWX(rd - rD

- gpwld 1 - (L.ti)] (6.66)

if' t -~ vcr~ical 4 'evice ise f2a' 17ades, and the anrle of insta2'lat2*cnji

-~~ i' ; " oe " -ie-the _ cot that PH" alanc r C-

'w'p'z'J, licr:, t3 m orvnt of ancalar ncor'entxrn

M; L(v F)W - 2wrdr - wpW2 ( r.2rrdr

2) 2

r2-
kr--hep flo --- s.-.

Mr 2  3 (r)2

~is ~ '-thoe c' n.2'ouron, it ir on~ ~era~tc '.

Sin ts'-!oz ar's cx~'o 'M f* t~he v"rtival f2 ov 'evice , and r.,t as wel? as

t n, -ce c-' cfl~4 ' t'i' e b1nd,4 , 3It then h-caos rnq 'Ible to .sclvc

"'.s.'n-hrbrS 91 0.6 ,thir i --ciled a ?7en 1! !-ct-t_.-

al fJmw in which there is nr-espt o-r-,y ar"~trn wea~k cvmte--currert flow and ro

eddies.

'her. '">o "crtical -treatJ, nunbr-r", s>(.6 this is called a strongly rotat-

'=na' flovw in which mne cam fid both eddies and axer'.s of coijnter-cuz-fert flow.



LI,

M6.13

Fie ". 17

Force .'Lnd Thxnrel

p6.14 4~#~OklaM

Fig 6.14
1. Trner1en! N' rem-ert of ' he IMoent? of Anc-ular Momentum of Rotational Jets,

e 7, P h' -,: 2ov! Devine -. ,2.cw Comb F1.ete 4. Wind Tunniel 5. Torsion 3al-

: c 12 The I-nfluence of "Vorte7 Strencth Number" s on Aerod:'nay-ic Structures

h- influence of the "vorticem strength num'her on the efficiency- of the
vc-o.ir.1 flow device, ,

The pu-rrse cf the vor'ticn.] flow device is to -produce a rot-tiocnal iet;, s11,-
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i~hly ajet tube t-akes the power of lowereOd rressure and tu--s it into the kinetic

enerm7 of a jet. In the _int-rva3 between the iLntake and the e:rhaust of the vortical

floi, device, 1-'21 it is avrrorriate to use Be,,oull's equation,

+ E+ 1-a constant '6.69)
1' 2z

Te-itcenez!ri 'mt out by the jet every, second is

E 2Z a 2  (6.70)

1 = ''i'-t or! ~z.:r isi'nato by --ch 1Z of I t flows r-c st, if oe assunes

that -rl- r,:- chp-Z~e, then,

-2 -C-, = t zve: of lowm-r-a

t '- r vortical flow dpvice.

0.7

0.4

0.3
0 9.2 0.4 0.6. 0.5 1.0 '1.2'

JE6.15 fXAtF%4

Pig 6.15

-. The ~fc coy oft o-~i cal Plow Device Varies With Chamnges in S 2. Votical

Pl ow lDevi4ce 5. A '-dial Vortical Flow Device Caral-e off Control~inC ;P

"he efS'iciene-y cf tevo-rtical flaw dpvice is w which is equal to the kinetic

energy rut outl each se ,ond by the jet divided by, the powemr off lowered p-pssure each

sac'nc in the Jo-t or'
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Fo+ SS2)
2g (6.71)

2G(P - p

Tir C. 15 -phica2.ly illustrates the way in which two types of vortical flaw device

ef~cie ", , r: ia'acsi evrtcl stren~th n1Zmbtrp S. L'" rreI

~ ~~c'~-r " h' s a h~j 7't - cr ', -

S >- 1.-0 * -- etgt 'hp' th- -- o~uctien of the rpile -o.ti'ral or qp 1 71 n

,_--d rc a lp- prs-,- -,if--rentiJa2 (pl-p,)q ther, tc that e:rtent, the

- .. ~ ~ of' '-'caia2v-l lo IIe-ICOF 'i-_"

T-na:--. - --r'tc-r pnf a~e Tf ist:'I~c~ 4' Sc th'?~j*

~r~rfat f'r 're±vcrticp ! strerth nvumb,:s, - , t i~ ~betoc rei,

(2) 7 ie irf~upmce of thp vr~~ st-en th nwb 'r", m, t*n *- ve,:ci

Th2e 2ar-zr the vort-Ic-I strerf th nunber, S, the larer the tangential Ccv-

- e- _44ri) c f the = tati 6nal j et willI be; the mnaller the axial component

tI, t'P TrC, the anl of e raior of the jet, 2 ,,will be; the

, tronLr V~- cie are, th a-rtedianet-r of the edl'i.st a, will bc; and, tI-c

arrth-e am-I~r t cf L-r which- Is induced to rolu- ~' t'-C mor '.s

!,,-~ ~ 1 tr f! ol'. srnd th i 'te th- nc7n c ncr- that' ris :i: -

o-- - r tl-- ciiert+

~.dal .~~t,'.; ~~'"±a eoci.,t V; :axial v _ oe -,- w- all b-COTI' at-

tem_,a- a-A r',!t mr- -h yK am:is very zuichl-Y. If one as-umes that r/d at tI'-

- cl f ~ ievice is pr.-'.al tc 0, then, the three conron-rt veloc-

ities on the cross sectiorn a-e uv. V0 and wo; further dovm the flow stre.m, for- a

A4,p'erert wuct .,p -~ mP-a~u valIues for the three cornD~nent velocities on th.e

hr a': an ' 1 c 7 (.16 --7aphfcai*'y resm-t- the -ea.

e---re=_rr. t.2r-- -irerientr, how the atteition &an reduction of the three conner-t

veloc-ities alone x/d. 'he three vorticn-l strength number cur-ves arela S=0.,

OD S= ?94, an~9V -1 57.4
( 4 h' nf~upn~cr. of the "vcr-tical strength num.ber", S, on the (-Anensions of the

Pi - r,.17 s'ows thmt tl-'e lper is the vc'rt4 -~al stren .tY number, S, the Ilarge=

the --!~'n f t, p are, c-f courter-crrent flow will be. When the seconda-,y
asiur c7 ar, C.,, Is aAied f-- the main combustion apertradte tairo
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taken asmumnn the same vortice'i flow device and the same vortica.l streneth number,

S.

20 m U21 20

-2 1 31k

20 -100i

r(M (m) ?(-)

c iw~o Along -- zi.r , z f the Three Component Velocities and the

C~tie:~~u , , as snr~ r a Cross S-ctic x = 10 cr. Down the Flow Stre-:'n-

cm the Lertcal 711 ow TDevlce for th-', C-_ss'VThen There Are Yo Flow.. Gu,,idesae

-'hen 7low p'i,;- Ar-e Prp.ent'

- .~c-. ~i~- ~or of tli- Th of Jets with Basic 2ruation.s

1 7 ~ et ,'rs cf 2_ rbu3en ce ?rec Jets

7iz c! m o t.--~nol tuimlent free jet foren with a width 's a

I--U 2't ?, A'd ar ;v*',_ozrt cf flow. -'ut out b- a narr-ow-crack jet = GcO 11.hat is

~~ 'C SrO - ~ ~ o ziw eous -S I.'h--ch P re eynel 1e in tc a src' ce
'I,-*-!- hi __ ~Sto-r'd. 'be ,mwifo-ri Speed Of the jet -'hen it

~ Z~ ft t ~t '7-le= '.- Th n~i r ov speed or ah of the vpanio1rs

-~~~~ - k-on ,r th-S Osf Smery -,=u he initial nomentum flow rAe of

a rt ?ble let a~t the jet noznlc =- c~ 'Zie jet iniuceo7 the surrotrding gasets to r-oll

hacnk on t~~v? It itd'ie*' tirht-lene r~ifftisjon, PnO it &Lnluces the cross-ou=

rer t e:rchanee of mn~,~n~ent'un Pnd enerCyj. The f'--ther out one goes fro:m the jet

roo-Qe; the mnre iv'in~rous ar- the nurou,,drlf Clate s which are rulled alernC by the jet,

and the smaller is thp mont of enerZ~ contained in each uniit of mass, Ther-efore,

the -i~th of the jet, 2b, is cuichly enlarged and erparided,, so that the axial flow

.4M



speed, u, for the various c-oss sections are CTadual]ly re-duced to lower va2lueso Oni

the basis of methods for the investigatian an~d measurerhent of flow fields by making

them visiblep it has been discovered that jets can be divided into an "initial stage"

and a "basic pattern stage". The area, between the exterior and interior boundary

lines of the jet is called a "turbulence boundary layer." Within the bo>--n-1Pry la-yers,

larce anrouznts of turbulence flow cause pulsations in the masses of rjas so that they

~ ar'2't - 'h cth -r at a h-4- fre-uency and a hi&h sne-d Causi'n-rcin tne

* srrii'pTv than the correspnd - he- r
-- -.cr~~~as5-::r .,.~. ~

U- t P!- mn-.- F sow h-ind--e tines !arger=. The 'teof chpnce orfn the bil-cc

shirs~e~. r i t .C(ic 5err/ay) has a- -5cc-.%rr -*-fIuence -I--

-7lo U,

-:~n t r- ~ ~Pcint "'ee the bounar ;cr- cc'-r"-

* ~ 1 -Lr .-h >ta7 4 4 ; al so the lcn:-h of the jet ccr-, So * ?:ne flow:

s-r-ds at th-e vrosc=-oz, spct>-'-s of the cc=- of t1he etare all equal to -the lm-

* 'c.~ vaUC, U If' one t<" 7u ,o c-ten-ra! br.imar, -.nes ard eendthr"

t?- -cs dirn-,ction to the cur'---t flow ., then, they iwill intersect at the or-in

~i. a C c;i.Llej t7.c- 0. *SL 270g iz~ ~r the ori1n oirt to thec

~rKar........ ~'~ ence f=ee jet is t his- the a,:ial flow

* :-'s oi~ n ~-'s 2cr, c '- o a-c P-11 ovr ' y si-ilar r~incinles c,-.^ =-.-se

~ ~ ' ~oy, v a ar - 'r e. Th-o~ti*r

or the 1-a-Us ~i lt-1ec ' masseo c'hanges =:-flomly; howe-=rt*

one . tha, 1 l a'-n-scale collective movemert of tiz

arc or -h-.- arc w h i s) for the 11a'n~c Pt5

set :r %crts Y ~ eo s the a:is of ;L .. t Y t~c bc the-

b orizontal coc-04-at-e and tlhe wa.a flow speed, u, to be the verticl coor Anate,

then,, or the b"sis -f r7's,!urP6 data, i4t is Posqsible to d- w the distribution curves

"c'rr~3trihtio- =C Yr r cr the floly B.ped, tU, for dif'erent crs sectfons, x,

-r the jpt ncznl on out 'a&7. 2) andc FiZ 7.1).*Teecre '' l iia

-ause~yr v'.l disrihntion rurves. '-7%e jet -rulls ntes're-dn a, n

:7a3:er hs roll n; on themselves Plong :;it al1so iLncrenases the amount of corncn
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_ms flow ?,n' re-I'e~s U; the-'eforev the commrron ems flow, G>Gs. Mhe jet expands and

'ievelcrs; howeve=, the xil onentwn flow? ratep M is almost maintained unchanged.

At any Siven cross section, x, the co'-rdinatep b, of the determined u um

rem- ~sents half the width of expansion of the jet; the ang 1e of expansion of the

jet 2a. If one takes (y,/b) = n to be the horizonatal coordinate and takes (u/

un = r) ) to be the vertical coordinate, then, the flowy speed distribution curves

for different cross sections, x, are all induced. to become a ncn--inPnicna~Iz4-ed

curve as shoiwnn rFic 7*.2 (1'). Th ' s la SIzona

~t~r~:r" _. Te h'lac' OCt7 or t~l inr 'Ile Jl~ustr-t±-- arcU3S ~ !~

e7 ri-Me-,V2 K',-ta; thle -ont_ -uous curve is ficured out on the basis of oT3e

The on-,

S:ee T a' i- cf T-IrbUlcrce FreeJ't

*ihin t he ba--s Ic cr= s' lf t e -n in Z -,ze o f a. turb en ce f"v ,Te

sr- d, ter're-ntu-re and concentration at kny riven -oint all behave in the- fcrr --f

~-Clrpulsations. In star.n ~ecus ra=-)noters = a'ver'are time rarareters + riulso

"a-imeters. If we tatke, as an e-rwinle, a two-dimensimal. jet, then,_

The Pave--A7 time value for thep aomorzt of trnzlse, u, a'A ' aP b ,±-e- 1

h~~r±lt-eo-_, or the hs or t)- ccrcezpt of 'be frap yn-Vee-

c= -Iie .1F.. 'h -, 'tN -,

- ____ flow''inn d.-t-c- 1. If' ore rne:zsr'r's the *zlsc flot: p. 8

~..rc 2 re~d g-:ndien (8o78y)., then, it is possible to
3-rcz th- nri1_ int-rce, 1, as fcllcws:

-. -' lc- h t"

L'-tt " Ch isaz ffoe: eruni to U'00(86/80) (-.1)

* Aczrir t~nrc-cprtzs cfr clCstio i3~r..icsq ve can ira&ine tdiat th ta-
lene ras oeis a-- stretched out in the 7 directicnr due to the influzor-~c '

* p'l~ 1 -nsard shortened in thie Y direction for the same reason. TIs wok t

t*P* rrefrothe- Pulse flwsn-oi along y9 Vq and -he ~Tnlse flowr. spead alon-

-9 ult are d'etl-pPr-ti2;hwever, they, have orostie sirms:

~z.1 e ani o7,&-siie the bo-na=' la-,Yw" of turbu~erci free jets, e' ar-e no
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Solid Cbt.cles to hinrle= L-A flow P-lsations; therefore, i.t is poseible to con-

* sider ±+ nx Eirt?'nce, 1, to be con -t-nt in the y direction.

:esjaesP t1his, f'om F'it (7.2) (b) it. cam bp seen thet the ratio of flow speeds

f or varicus cross soctimis of the hasic rattem or seifpatterninrc gtaoe (u/u,)

follows the -at-em curve of -the non-dinim-sional coordinatesp n = (y/b) and is a
'ro 'bility dest-y curve for a Gaussian normal di stribu tion. Theefore It is

-nossible to =econ ,ize th. fact that the mL:turo 'ist.-nre, 1, for a Tore~et cross

r1-t.o-'s of a t-oimni n-L cnt 2r-i- c= nr'oint rceturb--n"ce Jc't a'-C in

1 - ~ proportional constant (7.3)

Pr: _Mtl ascumcs th,-t thke rate of e-nrsion ani rlcm,:t of tehalf-,-1,th,

b, or the bl.nceboun4-_.r layers is in --rc-pc-tior. te : -i '-L~se flo*t:

sedV', as follows:

dtby by

The flow snu-,od ca~ ' c thel, va'~u-rc s-7'cns, (DO/ey) isrooina

to th ~i~-owah~in(,--/b) o ' "=',!'~ b tio- curves for these

crcsu s~tos(dx/di), u~cu ther-'fo7re, e-uation (7j.4) b-comes

I(db;m constant 6. (u- h . constant u,

lb a constant
dx

or = x(7.7)

FiC 7.3 shows thp.t, in the basic atw or efna -n st-.e of the jet,
* ifonr ccn'wt th costants, (uuf=r the Various crons S-ctions into a st=ZC-4t

.. lie, then, that 'Lne* is -thne raCibml7. line, g - (y/x) ,vhich st-.rtc at

* th- Pn'-t 1rc~co 0, eznd novac outl at E- cc-nc---an.t of exzi Lr~

7ne conclurions i thrds section a-e also aj;:ronria.te for use in the self-pat-

o st n es or thc axi--'metri;c flow, ftclds of rolrid jet nozz es. All that is



neces7 a-, to make the transition is to chainre ?b 0into (2r) nd y into (r),

Ssec 3 aussiavi 'lor-al Distribution Pan6 Probability Density

2.hon one is -oing- ey-rinent s, one ne-.s'x-es a certain ! hysical parameter n times
-a-10 olrt ,i- the ra s 1  s-, s-. *. M.Te averiCe arithmetical values for these

4 ~j(i1,2,- halre the hieest ~o.hlte
~'- ~~' r~~' ±' t',r-tt v2ie- or thp nararon, -rs nn-Taror. The -r'-cr- -4-

)-t-z- r-.-:n-nus th~r. 1 thon, It is nossilz'c to reco ie the follomrinc:
-I--te error is in ,? n robp2bilit - &f thc ~ wilnvr vTet S1 arr &e-2.z'i. is

no'±--' r-'or is T1. _JU rb~i t o ~wLue S, a:.rn

- -.7 1 Vlue, S -

--- rolpbility of tLhe me:-sured value, s

f (n ) C ~ -
-' r > . . . . - -o t ri t e c4 ~ ~ - -~ --

o ro-.~ vftc - he ±-ea q 0, tlhe' " '- -- i ty r-ch- 'ts...

~ -he he U'C'c. of ' or -- Prtrance of erro-rs --hi oh

re in rmtjebut h~.eo'--o~ite si$ is ar c the samevW O 1~c le-ad2 t t>.

,r2ot th?,L the." r"ob-h-,it,- jli-tri-butior in rjuw"'tion Is the az-ialb'symeri ciirve

with 11 = 0. Ct-o 'ncc- -'ci- -

* ~'u-mCo-th PAc "th~t -r-17 of thp -- n~ rn- itr-sents- t--e t- on-e or rnlitu-

~ ~rto ~ensth'-Pfo-e, tlip totril -rob-bilitr of the simultaneous Ftpr-!-P

-n c I of th-vru ty.-is of meanirenpnt er-rors, is the r-'oduct of all the probab-

* If on- t~ikes th.o lo -ithns of the' tw~o sidles of the aqruation above, then, one obtainn'
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in. - nt~~i)+ In112i~) +

+ Iz(.+uND(&7) (7.9)

~3n~?the avr~r-rp ar--*tbretica2. value, A, is the maxcimun rrobability of arpeazance

of the TmeasurqK value, then, 1-10 :-hould have a mx-imur. value, and, -i-4f-ferentiatinC

o'ver A, er-Liation (7.9) ouztt to be equal to zero. Anj is unrelated to A.

6kln.P) 4 dIn f1(,,) , + d In f('iz) dil
dA d1' dA d172 'd.

+ di*. r. 472 -0 (.04, dA

-''se Df the r~t :h't th.,4/d - ercrore,

dj~)+ 1(~D+ + 0f~)- (7.11')
d4d('m7) d'd(102 147.

000zu~~: = df)T 1, 2, -n (7.12)

thai"e, e-uaatior- (7.11) cm. b-a w.rittm. in the '--r

+ (m)6+ 0 + -'46~ 10*,~ -V (7.13)

:~v31~tc ur'M' 71t0' c, iit ecimti*c's,ta~'(j)

SC4* + c 171, + C37- + CWSj +

Fron eruation 7.5) we obtain

000) - ,C" + C1 ± 17a + Cl 7

f.I

015
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It is necessaryj first to set4 fy equation (7.1 ) and then the various quantities

in equation (7.14) -,.Ill be equal to zero, and the constants, C,9 C, and so on must

all be equal to 7ero. However, from the definition of an average azrithmetical value,

it should be true that

517o5(aiA~w~s~~A~o (7.15)

In mrllatior .i4 , te fac-1ter 0- -, is' airea;' ecue-l tc zer-o. If t-C

U~'Z~a?- n'-,4-1ed to-sth'r, a:----~ c-- of t - -e* ual -Lr -;, ':c Vt nc:-ic

out be--------------------, ito nzt re for C +tn

equval tc zero. z-Ecrnse of thicr f-ctq f'rxn enuatin (7-l'), we1 can cbta-i-n

4i')-dt(7) -c dt(17 ) C-~v

117.

In f(,I) C- 19?j + in K, o r K(~ c"" (7.16)

0.hr~- ~fr re~c*"-p its ~aiu~vplue, IC; 1.heri 9 ±-00. K(7) 0.

fror e-a'ut; on 7I N1, we 11mov tat 0., rm- have a- recroiivp velue. IS ,..e

ao--~-~th'± C, h-, thcm. &'tL

f(17) - Keh V' - Kexp(-hl ') (7.17)

to t"-f 3' a tr2'utr-=. P - #ion, tc Lre~

=al of the ~r.~iiydensity, t(~) betwfeen ±c0o'tt to be enrual to 1. And, i

' 'c fa o' Tir-'- ~ c~r . ~ e zalwa:-S be Sig-

If vaZ~ '-m'.i' xd rdl, hnbm--z:e ~) -,v- r

a-S:Ynetric

21r IK .5
hA A 2 therefore ~
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2aie probblli1ty densi;ty, functior

f('0) t-(i"" Ajn (7.19)

h=the acfcuracy factor i-hich det-rmines the clo-e o! the), probability, density

*~ Aif one assnies the ,,lf% then, 0w = the "standardi~at~. or,
ar Y i a~so calle, terot-ne-'n-sruare of error or deviation ~~h -"'"

then-Q

j .....L. e'~ -- J ep (- (7.20)

t'. :~ h97an" 't~tt~~c~ tt eequatior. (7.1 ), -t>"n, itis popszibie

2 e- Sdx - erf(hri) (7.21)

Se -Qaic2uations of Turbulence Jet Fiel~s

-. -- ~ cJn' ic is vi;scou-s, comp-_e-,Fible and composed of

4-cePn ur~lin_ 4t-d rTnace, if 'lie 7e:Znnld.7 runbc'r,

* ~~ )I to -o"i -' Of - z

-Co C4 , lp, Ar.-~ e"a- i w

-- esvure, RrM we i;"Tcr- rz-v~---, Thim, th.- vectz'r forr of thf: n--n --r-ional Stokes

p-V p+ ~LV(v -V)+ #V2 -V [N/rn),
.3

(7.22)

SIn actiia~it,.', turbtjen-e iet fie&As are lar-re ?rci snall vcrtical1 mas,,es rolliiE
-"~hOtviem- a"A' ~ .- ' ~c'2'r tr c'~~ re-r-srteO as:

r-T+ +,pppum~+p)

and sc on.

Because of the fact thai h Vo-tI.crlms'e ' MaS.hst TIPi- other n uin
fricLtion &nd eyceqssive "-turbul-ce flow st--ess" nrmal stress, tr, and shear c= ton-



Certial stress), the tensor for turbulence flow stress, II, has a rutual corres-mid-

ance with the tensor of the average time value of the product of the pulsation vec-

tors:

II r,, a' r, ~-Tozu'7 -(pYw'

ra.g J -P3'u (wyV' - (pw) V

-hP-~~ M I' Cni- f 0rZ a -1,7a- enne jet flow field, one should ixr-

-,Iuoo civerz~sncej 1-, of the tensor for the turbulence flow str'esses (also callpa

~ o~cm~s-'res::-s), that is,

p P -P + V2-V + IV v)-V1n
Di 3

(7.23)

:2 ~ t- cmbsI, nc~br P~ lwse is not high, v< 60 (m/s), then,

simplify ~ ~ 1 maiu-irs iisosible to- igrore compressibility, that is to say,

=aconstznt ana does- not change; i~r such a case, in equation (7.27), -the quar-

*V, Ch for the "clive-Z~mep" rf the -flov field, io e,7%al -- ec
-, t Cr -s P. -C i fv ISn

~nc~z ~are, ;7~nr iv- .ent 7i,7o!-_ty c;ar b,- sinlfiat ead

6-+ pV -VV -vp+ uvl -V -,v -n (7.24)

a ~~t~hear ~ -~'n n ~ z, 'f wo tke the aVer-c,

tine velocit, o'~rre Vt r W, ndia7 tlien to the pulse velocity compo-nents,

tv', irl, an T vI.j azrc' use the!set -ornent ! tc re~lace the instentemeous velocity comn-

(11p -_n 1- -c-

By .6s P ax77

as Ox as 0ay'0
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.- ,-.

.2 ~''~~~h a Ste e

-- Ti 4i '. - ~ a -;T, It ...-

- 0,~" -0, - 0, V'W' 0.

Q- >>J q 
.

o x .1 

(7.27)

1~ v (7.29)
P O OC~

+x Ay (7.29)

-. ~ ~ ~ ~ ~ ~ o . b-- --y -~-I ~ ~ f. . tv*'x

as

* 4.162b



0+8 
1 6u +- v._- -

a -(7.27) (a)

., , 4,. . -, . • .- .. . . .. .-

-Th - i . - .. .. . . ""

"--. T7 1

- - . - oba.2h a ic e u tin- -
4:" 4:- £ .. ..

4-i' " 4' -. 'e c-

-.- 1 '1
:P~~~ ~ ~ C8r i u 

e t

-"4,'.'.--represent

u p. 4 ' 
-

w.- ca obai the basi 
-, 

u*7i 
-* . -

.1. 
O4 Bu 

(7-30

Ty 7

au + n 0. (7.31)

x By
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S-c- 6 : t e~r---s of !-nn Cluaticons a'-d Force Ret Anal''i-s

T- Ize P at rj- 7. tc see wh at 'ha"--nens ,hcm a ncint .3o=(-e distubed. iet

0r -c7' -.th

'J. 7cr t.0caq-S X -:)z f t0 7-C'cs 1-17 a--' 0*"-"; 7h'& C, '70-', d t

L a::-- c C '.--

tc Y b --

.. z te ~- ~~' ~t',e jet, ", tz 0 , '- C '' 3)

p u -~dy +, p,-Ludy -1,rraxay a, (77

~-~r~ ~ ~t-zep nte~rzl! in enuatior (7.52), then, we e

p u -udy - ~-(pte)dy pul-ax 2 ax 2dx'
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- 0 + pj.--L dy
8:

when y-0, u-u., v-0; when Y,00, U,

- , ,, theref ore Iuv r 0

~. ±.~c ~"'t~i~ '~ ~ -ft si~e of P(Uatin (7.7-) ar-e

P u~~ j pu+Q -dy 2P u Ld

Ox CO (~ -rC -0

- -. -.---..- 1 --.-

dx-

2  pu'dy-M -M- - constant 2Zpb,14 (7.33)

:'cnc:n an en~ ~ a~~(.7,~ f~o~~ onOrit ons a--2y

a flt I~ o:zzle ~.ih~'K-tOf 21 , a'. vt-. cf' 1 -nrnp-n nZular to the tr.c

j *of thno illu~-ati-m, a jet no:~le flow speed of u, and an initial mfcmeflt-up flow"

r'e r=2bopi4.. Preauseo of ±>)e fpact that the szur-nm~lnG Za ,s are :niduced to

*roll bac n ?r- t q~le ad[ tc the amount --f flow, or, the ax:is line, the flow7
q-nme, , -lcn I sr-cd P ee: h rn un fow r--te of th e jet is still

m,- t ain P6 in a roflst-'t s t -tet sc that Y; = M

Oec 1 of tLh-s chanter ta--Ils abou~t the fact thpt the pattemed functio of

flow- s-eed triibtio in the self -patternint- sta-e of a jet, f, only varies writh

-- mcsin ,~and -ioes no" vary w-ith chanCes in x, that Is to say,
164



UM

Ir --me assun'ps that the rale ac-oxrdi-nz to which thle flow speed, un,, or the

axis line, reduce ' to lowrer vr.lues wi1th chmnees in x can be ,!--i'ten as .XO
(7.304), ±hthe razle acrUZto~ which the oaf;it f a jet, b, e-rands

C. _17 be bocrxe .~)

0 pu.bf2 dr , d d7

ui aI c net vax7 vith rjwP2-- in 1 , and

Ac~'cr~L". tod1 nutor 7.

x

to -7uaticm -7

*~(4 4* 
C-~,-

-A t

aG,) 00 , or r,- pu~gGl) -puL (7.37)

311tittrC tile 1-1st nuri-i-to Pqiiatlon (.0

0 ey P 7 82Oy bt(.8
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If~ we tAke the nattexned fimation u =r Pa d vabstitute it nto ejuation (7.3 Y'

theng the two quatIties on the left side are

au a. Al 0 d 1 u.b
as O d,7 Ob dx As

Ob b'* I

, -,u

1921

- U~Umf 7t'tj (7.39)

'? y -4= - .- dy~
6by ax

- .u,.b' - u:b In

'ii'

A: -- - - U-Uwj .(.0



b 9-r Id,7 hr'd, ~ (.1

In~~~ eto (.), GO on thie =icht side cf the ecual si-M is nothinG Iut

rl mo~~ c~', th@:,7ef'crr', tevari-c-it- or the !6ft rside 7,f the ,? a

fW im c' t fi. wrs o f 2/ I f t-- ,: Ofn FP ar- t~ Ce --a e a

hu I - , , - 7 .. r .

S'P zC I um)- 1

1mo and bx(7.42)

Sec, Cur! lrke C7 r- Vc).ure Tccr

-"S a's -- ^act 't te~ E-1!7-7r a - -~ 1- -.-- 7Y

vcI1,ze fr a civen crosc.s -ctirn of thIe -.et oruwe do\l. the flow IS goQ:

2 a1m4jdy, . 2 ± fudy - 2v.

AX dx J

__4c _ *s erila2 to the r-.te of iJ-c- '-e of th r v'l? along x A&m) 7.5
C the a--ir liv'eq the .t- the fic, vsps is, the stronger is the strenth

-... ~'e ~ th~ ~tr' rn -is-s tcv rcl!'' the -therinC of the flouw

C!p oC:thje __:r 17'- y)~ 0 -a, P ~ pTV' ;:d the srfC~
~e ~c&~ rr~', te trot~rthi t~orY i hef OrL, v. and u are in

if a -inxe thott a= the coo"Icieit of -roll Lnclcticint thpnq T.
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'.thlch rioes nct vam-' wlt~' chant---s inx; hncause of this f -ct,

.4 ud. ay or.~ (.6b) hI)d -U

I---eof t-he _ e--t VIP+ a constant

dx(u.b) baS

dx t~'e hast"se 3 equation

u..b + ub' t1+r'-2XCC,

UMn

Th-~ t tr'.~t in ain~zttfror tecit vr' 0 7

fij74,it ~r ~ h-t >2 h''tof the jeb,;p ~ ' - ~~

*~~~k -. A--w.- - --



Chaptler 8 Tur~l.flftece Jet Flow S-pped Diistih'jutiJon

,e- I jTSP of Mixing TDi tance, 1, to Obtainh a 71ypel Flow Speed Ourve

Tie objectvc of res-ach -4-to jets 4s to make it possiblc, en the basis of the

ens;---z c' the jet no-:Ie rnorth, L1r2b 0 or 7r ane assurm=C one already lmovws cer-

tnr :Litial' oo-iitiorns, Pa'ch as, f~iIn1ilow~ volume, G, (or- th , volume of Ca
~X ~~ic'i~ l-4")% spe-da, t tetrp-t'rT " crnetraticri, cc

C c

~' _ ..-... ~" ~ cr-. borna7 r~ c-uzns, suc a,

c' Coc Z,' cf surrounding s7ises, , Iressuret Pe densit, p as well as T , anc-

c o, to --- r'ir tc cr a-7iu-,t r'r-i-c-2 --a-tmet-rs Vv'.I5ch are a re- A 1olcn or are

Pel- or u1sej. moch Pr-, nc ,s-t't rr-7,zire s-nocific hr--t, c-_, r'te of thte-mal ,crn-

~'tj~ ~p i- <o'-oc ~. ir>'me 1 ' v~zE~ty, , U coxefr !j'er~t of

tz"~-:*~!-p, r-: on,: q: Pr~- tc. la c,--' a sec of artri~. 'l

to %oIvr, np!7 C-aPtc"-r Iczr ,:r~'oit" icv f~o jKc%. h-rtl' ,zTrril

t~nt"-~' r -onceer '-ati- nns, t-- rate of vit ePv*- r f 'es

cr -1, :1' ~--'i:zr., ,-'~-e 'Oune - cz cf O*

(~/) ~* h''-n '-a'. npr.-'ria! hve -e 4"--cncc va'c " -'

if. in ~-~- ~ '"- ~ ': r j..1 .2),(,)~ (.)

- -V P(ffCt)2j. (.1

rhe r1cn :cofe-zo 730)

1 OT - 1 -62 [FtCY 2xe)22 O Ia

P~ B~y ay Ot0,

~ar' C 'nrbt- constitn, '-1 4t jPossible te deter-i'xe ",: urs for "her, by

er~r.ncr~io.If one a-m~ues thp.t 2 (PC)' 3 a- eonstpntj th1en, e .uatiren (B.'j

OV7  OU 82U
- T

In c~i-r to Vzc : ir -"iel-t Zir't, sep.-Pat'l d -. th the t%-'o quentitirs

iCO



on the lef~t side of equaticn (7.30).
Fr-Om ecluation (7- ) we Imov, that u.cc X 't and., if we as-'arne that,, the rzotio

const--t is nr the-n, u -u/ (.)

Ifwe use .0 (y/b-,) as t he horizonta. coordiate, thenp

if we-, -tii:!~e the aver7 - ti-ne ficn functiorn

4'udy, thenu ~ ,v - ; (8.6)y O

tr. clt.,' -

-ax .f46)d 0 a~I. (8.8)

an ( ,

(OF F (8.9)

ax Ox 1VT 9 VT
I - nF' - F'

X +OF)

u -u.1= ~- F' (8.10)

ou 10 -F

Ou _A--F"

49Y By (/7 eV
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89, axV7 84, By 2zr2i/-

Anc9, because of this 'frctj it is also true -th?,t

V-L .±~b'"...)(.2

br O, U 2 U *

Pv lay Yx F

'~.!) -c.s S.j ~.7) - 6 (S. 11) and substitute L~r ntc ?,u,-t o

~ l~ :eccnr;: -. !1/:i, then it is popsib1e tc obtainr

(F"t +.FF") + (4F'F" .- I FE") F"

2 "~+pFF" 4 FO .0

or

2F "F"'+A~ (F F') -0 (9.14)

7-. ... j T. ( <' o-t t±-e bonnap-: Tfth

Y moo, n-0, do-0;

(u/u,.) - (0) -F'(,) - 1;

V 0,V " ( F' -IFtheref oreF(4)-0

- ,(O7Oy 0, (Ou/,Dy) - 0, therefore F"(40) 0;

an' , 1'rhc~

7 -00, 17 -00, 2 - 0

(u/u.)- 1(00) -. P'OO0
1 7 0. F"(CO) 0.



If we iterrte e,-uaticn (8.14), we obtain

F + FF- (.15)

If we utilize thp bounndar, condition, -0 , thent F' 01 and F = 0; if we

set the inte '. 2 ca. stant, C, so that it is equal to zero, theng in the final anal-

ysis, we obtan the nr.o-linea.r second 'eeree o-rinary L4'ferential equatim for

the mttPeane cuv; , .t- e Lntm~nl frot-ti.o_., F(#), arnd, thi. eua - -- is

F' + FF' - O ~

o 0 1
0.l 0.105 0.979
0.2 0.29 "G.940

0.3 0.314 8.379
0.4 0.419 0.42
0.5 0.524 ' 0.7fl.
0.6 026 *.721

0.7 0.733 0.660
0.8 N.38 " .604

0.9 0.942 0.. o.
1.1 1.'048 0.474
1.1 1.130 0.411
1.2 1.255 0.357
1.3 1'360 I • "-.300

1.4 1.465 0.249

1.5 1.570 0.200

1.6 1.675 0.165

1.7 1.760 0.125

1.8 - 1.310 .0.095
1.9 1.990 0.067

2.0 2.100 0.046

--'_ ro uti zed the ntmeric-l -.- _-r etd c su.essive a;pro.:nations to

., e'at _", (2,1C), he o _, F'(4) 1(0)" m(u/u.)

e .. Cr '7e' i .t-' in "Z 2.1. 4--(y/ax), v-(y/b).
. e - 1.0, them, - 0.955, and f() - (u/u.) - 0.5.

See 2 C r'-u-lbu. ence , yamic Viscosity to Obtain a -0ie .l Plow Speed Curve

172 I.
= _z4,



71he level of violence of -the exchaee of rnomentzm which occurs iIen turbulence

firw air masses rub a.--Thst each other, pulsate ar.0 diffuse is cl.1ird the "t-1r-bu-

lerce flc: ynpvn'c vi.,costiy"Y 6 fA/Pm/UJ.Te turbulence flow equiva-

lpnce viscosityp , -=pe, therefore, the barbu-lence sheax forces Pare equal to

the turlbulence flow.. eouiv.-lence viscosity times the average time flov speed Egrz-d-

jent,

U 
(8.17)

'-"~~~" -'-ns tIr~ -"~fiz l ±r~, e tu-rbu: en-c f!c, L~~

;a,- -\

rulence 22'-;: *~~'mo't-~ .Pa~i.Froi equation ,,.7;j IIc-, ;

tir 1 -' l=ph, zaz-d, from lookinU at F-ig (7.2) (a), cne -c-.~e t

- - - (au/ay) 7 i; u r we 'or flow spred, u, r *:,

p=a constant 9(.tb bu., V, =PkOU.(8u/&y).

I -t z~ r tlice ~i- r t' I -~r cayers, y , (Figs .1), at

r e s ccf 1 re r--n f' i c u 1ar toc t'h r-r.urfz c e of ItI i s 6r n.t ion) whi ch a-r - cCr t aien I th -

~n the bourd-: a er- f the lf- r'ir tCe of two-'-irer:-c Aia2,rcr ocurc

Sfree jets. 1' we i-o'iore cv, . anf! su-ovse that t' :atoe ea

- . -I of :rs -- , hn, 1) te nonen t=. flo I c - tc en tra-n ce -,.: for thie cmc-trol

layer, dx% 1 = pu.vdx -1, 2) the monentur. flow Trate of L--:it for te control layers dx-1,

Is fjua2 to rrth7 and ,43) the turbulence flow friction 9.r-lida istheoua'

I aye= =~ Vx 1 (

.dMu..d pU2dy

th,?-efcre', tie imnrulse foree eyuilibr-um c' the bomd'~ leye- is
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pv-:irJ p~76vJbK 2sO)

IL !-. = Zn

pT

--

a , bV

T.

z -,,r y.re C

era 3oia

* ~~I" onc art-=e- th:7iz rr~ ~j

q' a constant a

(8.22)

71le aor--"'"e time~flv Pfm-ivr

1~74



F'df F(8.23)

gm 1 F F, 19V.!--IF F] (8.24)
2 V-2

84 O-24/ XF]ni/s.F'
By or 8  -/

(9.25)

(8.26)

- ~c'~c:'the 't tlhai- - Cx, C-= a constant

*U afta

4 ... 1F" -AC -= -F" (8.27)

Iv e t-..e eliat-,ons ( C(.25)9 (C.2-6) and (8.27) a~d substitute then into

equiation (3.20), then, it 4s moosible to obtaln



1. FF'+ k,.JE" If one seecs -
2 2VkIC

then 2FF* + F" 0, If we then inteerate this equationt we

obtaim F2 +F'- K(82)

if 7~e con-ider the' bound',--_, condaitions as ',he,,~v1 in Fig 6.1, then, -h=.

Yin0, 9=0O) umUm., a.-10 then F'(0) I

.r7 -0 then F()q'

v 0, then F(o) -0

y co, cou-O0, F'(co) - 0

?y ~::±~: he ~ ~iosit i- osible to obtp~i F' + F'- 1 (8.29)

7n' sz. utior fmction of the dif>erential equation (8.28) is:

F w. - -g

a f 97, ft"(9) th~g(1.932)

In Table F.' orne er. sFe the sc~it',on dpta which Gce--tlpz comrilee on tho r'attemed

mi-v f 01 o -errp?,F')

r~Te b,-sis of e7p-mnt ~n the cvrnst-'t or 7.67. '.eC~ ~w" n

b a~d, hA~n this Is t-ue, we, car !-nolve for -rrecise values of 3.v, e

176
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0 0

0.1 0.114 0.990

0.2 0.22, 0.961

0.3 0.341 0.915

10.4 0.455 0.955

0.5 0.56F 0.786

0.6 0.662 0.711

0.7 0.795 0.635

0.9 0.909 ~ 0.558

0.9 1.022 D.486

1.0 1.136. 0.420

1.2 1.362 0.302

IA 1.590 0.218

1.6 1.920 0.149

1.8 2.045 0.102

- 2.0 -2.270 0.070

2.2 . 2.500 0.048

2L5 2.840 0.021

S vortical -- 7-zf1~rmec "'oi e ~v -~~a

-',r's ~ ~7v.'--rt '-!:z' -n n~?~2 cf nomer.t1t , enere~y and nacss. "41P pulsa-

tionr'-cf vc--tica~l -I er c -ar'-e -rncy h-ePfore, it is cnly necessra-, t^ use the

a~'~Cf-'V1 p~'~-' t~trsi -~ rrclvi' for tlio avo'- -' "-e '

r*n r, a. are9. -P>' tino te~rNcII -vd~~ r h ~~~-~-'" ~~.~ar

~tel-xhardt, or t..., 1-7ir of exr'erirnent'1-tio"., has prec-;seliy measure,9 inr tnarbtJe-

"~ '.. 'b1-~Th ~tr~tor of !-c s twn0 d~sits f lc,% in t he x ireoto

n-"orce-f~o'' ~recion yan' 'tescm ~~emts ~esimilar te a 3aussMa1

7i- the bovun"--- IPPeyerc of nn-!Orr-Sble, ave--a,-e time equjva.erts of stable

s~±sir -'odns~oa Aiturbed Jets, te momertr of jet flow in the &,:ia2 dir-
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ection, ri Is con served so that M - M9 2bapt . Concernine the exnansiont

, , of Jet bo= -a- layers in the x direction, there is a c. ange in wilh . h.

to th) s fact, -14 reduction of' impulse force alone x is equal to the nmomertn2 density
flo,.. of diffusion,9 that istc say,

a<,h~ t i ~Kso ~aetha th tuh-inccflo-- "a ecer f ie'lave ta

he ch~a- -'t,-r--t-il fLorces of thE!. buvr',:a--er39 so that r, r,, Z'

ez er na ex-ansi3, n. a jet an n mvirnmnent of" c-t"-t '

~or p s erl o a -rtt '- -" of thi- x~t, a/x =0.

TUe tc v

YX+ y 0, or W- 19- (8.33)

7- 7~ -:- flnw Ofcr- .

pOv, is J.Q Ur r :--ntior wi t 1-t" *'-eit of axial ] -- ~'~
no; ~:'.~ Z(P&2 .,f' a--z'- that A is-upal t , f ~:z '-

qtprt, or -4z"cjnai~ constf-zt Fl~ n allee the momnent,= ~~~cr'~'e

- 0 - 02

puv-Ap - or uv-A,-- (8.34)

If"~rnr~e ~iaio ( 1-- 2th PeIUPior (z'7) thp-n we olht i-n

or2 A.- (the aim-nsicn of A is ln-

(oI-toisn.,entan diffusior dirt:,zce, A ,is actual'?, a !ocnstant, thei, eqtpti-m

~~*~) ~ in aris~ scod de7-ee TPartip.1 dif 'erential equation with a par, bolic
shapet an7 hai' theq sa.'ie fo--, ap" Pn ernaaPtior for thermal con~uctaknbe, The standla---
sclution ir a "dleviation fanction." E1owevert due to the fact that 41~) , h~

will b-- a -o # - c-e com;12icated than solving the the~nal conductance equation.



7he standard or normal fun ctio- we have been talking about in this section

(equiv- lent to a probabi-lity density function) is not a flow speed rf-tio (u/%)v

but i is a momentum dle-sity flow ( or dynanic pres-wure) rr tio (~n/u) s

surne that the non-,-im--sioDal coor'.inate, ,~=(y/b).

AocczIing to the coc'servption cf axial momentum and ss~f-patte2-,ing or normal-

2zin -c 17'ditoics, Is i )OSzSsible t-- 'Iaow that the momentum density flow on the axi-

'i~-~a~ ±~ha -~i~th h, ebc'ir P.- lay'e- of a point so~urce Jet are Lnversely

2t -

(8.36)

f (0 theref ore
- b (8.37)

6? n2 dh
c x b2 dx

dii f'() r (8-3S)

17 7--

[Lf(,7) + 7~f'(,I)lbb Af"(i7) (8.39)
dx

* .~A Cb, b Cx, (db/dx) -C; o

K~~.1~c i's, i ':'~~atp tI-at A b db sCb -Cg,.
dx

t"I t s t c say- tha' t!, ic 2 1st~ncn of'n~nu density flovw, A , varie _SIth 41

in :.33~'c~.scc~ s §a-ct, eyain(F.39) can be ilfidto rea-7

f')+ ~d()+1( -0 (S.40)

:L e--L~e~at~~A:.r,~ 's -nz: ) to obtp'in
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-C'JC-'% + C2 cirezP(- !L)+ C. (8.41)

According to the boundary conditions for a point source, two-

dimensional free jet (See Figure 7.1 and Figure 8.1), when YO-,

17 I,(n)-1 When y -±, i ± cOf(,7) .

Because of all this, one can precisely fix the integration

constants C, 0,cl -1. .And, on the basis

of this, it is possible to obtain

K1) exP(~ 01,o~ep&~. (.2
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Section 4. Initial Phase Flow Speed Distribution
for Flat Mouth Jets

Let us assume that the height of a flat mouth jet - 2b 0  The

initial impelling jet flow speed is distributed evenly along y, and is

equal to U The initial volume of flow is Q, = 2boU o . The length

of the jet core = x0, and, within the core, the axial flow speeds at

various cross sections are all equal to U0. After the gas flow leaves

the rim of the flat jet, 0, there is a sudden change in flow speed due

to the fact that the gases in the jet make contact with the stationary

gases in the surrounding environment, producing vortical turbulence,

inducing the surrounding gases to roll up on themselves and form a turbulent

boundary layer which is also called a "mixture layer". OA is the interior

boundary of the mixture layer, and A is the end point of the core of

the jet. OB is the exterior boundary of the mixture layer (Figure 8.2).

On the external boundary line, the axial flow speed, u = 0. The angle

of expansion of the interior boundary line =c I" The angle of expansion

of the exterior boundary line = a and the width of the mixture2

layer at a cross section x = b = C . The turbulent flow dynamicx

viscosity -6 - kb$ -k CXUo.

According to Equation (8.19) one can assume that the turbulence

shear force

r-.P .. ,y) 7 -- (8.43)

At a cross section, x, let us assume = - is the independent variable. Then
18
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,-• ' .. .. P-

* 1> ': * * - -.....

PAL,

.--

~.' ~. a constant a 11(8.44)

. , ' .a ++ .-- :-. +

rUZF(9) UxF udy (8.45)

u iF , or -OT'(.6

v COa''-- ("xF) - -aF-- xF'
Ox Ox _ x

! ., - (IF' F), (8.47)

&u =(ag F')
iei



Ou _ _ _&

)- F '') - - (4-)F - ,

8 .. .. .. a

(8.49)
I ,,R. " kc ±!-

a- ay 49 _)
um~C~k.At~u2&)~2co~oL .(8.50)

The basic equations for a flat mouth jet are still

ax O y - '0 ey( .3 ,
&UO

OY . 3x(7.3*
If we take the equations from (8.48) to (8.50) and substitute them into equation

(7.30), then, _ 'F" + A (.,F'.F" - FF"

-2C 'F" -0 •

This can be simplified to read 2kCF""+FF"-o - (8.51)

If we assume that the relationship of the constants is 4kC,... (this can

be checked by experimentation), then, •F" +2aFF"- . (8.5:)

The boundary conditions are as follows (See Fig 8.2): when

NU

when us (8.53)

In order to solve equation (8.52), Goertler utilizes the infinite series below
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vF( ) m + F,(f) + F,(g) + - , FV

rF.() - 1 (8.54)

If, on the basis of equation (8.54), we solve for the second degree and third degree

derivative functions and substitute them into equation (8.52), then, it is possible

to obtain a series of closely similar solutions

-- aF' I + 2 ezp(-)ds ,'l + erf(,)

or

-0.5 p + _Z2)1 (8.55)

The deviation or error function, erf ( E ), in equation (8.55), can be determined

by consulting tables of data which are already available. These can be grarhed out

in the form of a curve as shown in Fig 8.3. If we already know F', then, we can in-

tegrate to solve for F, and, on the basis of equation (8.47), it is possible to solve

for v.

-23 -2.0 -1.5 -1.0 -0.5 o.5 1.0 1.5 2.0 1

Fig 8.3

1. Flow Speed :istribution Curve Within the Mixture Layer of the Initial Stage of a

Flat Mouth Jet (The Solid Line Represents a One-dimensional Approximation, The Bro-

ken Line Represents a Two-dimensional Approximation)

According to experimental observations and measurements, the constant, =

11.0, the interior boundary expansion angle is equal to the half-wedge angle of the
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jet core, aIm4.8 0 . the exterior boundary expansion angle c09.5, and the width

of the mixture layer b-Cza 0.176r'. The induction roll up gas vol-

ume ratio (Q/Qo), in the initial stage, is approximately equal to 1+0.035 (x/bo).

The length of the jet core is z12be. . Therefore, at the end point of

the initial stage of a flat mouth jet, the induction roll up gas volume ratio (Q/Qo)

already reaches an approximate value of 1.42.

Sec 5 Round Aperture Jet Boundary Level Equations

The shape of axisymmetrical disturbed free jets put out by a round aperture

with a radius, ro, is completely similar to that of jets put out by crack apertures

or flat mouth jet nozzles (See Fig 7.1, Fig 7.2 (a), (b)), and they can be divided in,

initial stages and normal or patterned stages. In the normal or patterned stage, the

distribution of axial average time flow speed, U, in the cross-current direction, y,

is also described by a Gaussian normal distribution. The Jet expands in width along

the x direction. On the axis line, the maximum average time flow speed, u m, atten-

uates and drops in value along x. The half-width of the jet boundary layer b1-CZ,

C = an experimentally determined constant. When a jet enters a gas at rest with

a uniform pressure, Pe, there is a roll up induction flow speed, ve. If we ignore

gravity, then, the axial momentum flow rateM-a M, -- 3 ,,-a constant.

If we recognize these jet fields to be average time quasi-stable state

flow fields, then, local acceleration = 0. Concerning the fact that the turbulence

shear forces are much larger than the laminar flow shear forces,(r,>>r), it is

possible to ignore the laminar flow dynamic viscosity, v. Because of this fact, the

Reynolds equation, (7.24), for a non-compressible disturbed jet flow field can be

simplified to read pV - 7V - - V• n lN/m'J (56)

If we make use of cylindrical coordinates in x, r, and 0, then, the average time

velocity in an axial direction, U, in a radial direction, v, in a circumferential dir

ection, 7, as well as the component velocities of pulsation, u', v', and w' can all

be expressed as cylindrical coordinate values. The form corresponding to the average

time product of turbulence flow stress tensor, 17 , and component velocities of pulse

is

--- - - -"
:r -PWU -1wV -PWW (857)

If we take the average time values and add them to the pulse values, for example,
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(U + u') and so on, and use these new quantities to replace the instantaneous values

or u, etc., then, we can take equation (8.56) and expand it into three momentum equa-

tions for an axisymmetric jet:

In the direction of the axis, x,

-L + . '.'.. A: •

Along the radius, r, 0
0- + O - - IA

ax & .o - T .. . °

o , o, " '::. /.:,.(s.59)

Along the circumference, 8

0* ,A!*+"
ax .- Or. ,r

if one is consiaering non-rotational jets, then, the circumferential component

of velocity, w = 0, and its derivative functions are all equal to zero. According

to the special characteristics of boundary layers
n::~v, -'r- 0"'-

Besides this, from experimental observations and measurements, the radial and circum-

ferential normal stresses of turbulence flow are generally equal, that is to say that,

On the basis of these postulated conditions, equations (8.58) to (8.60) can be sim-

plified yet another step to be:

In the axial direction, x,

ft + - I.
ax Or P ax

1(8.61)

'In the radial direction, r,
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Por O (s.62)

By integrating equation (8.62), one can obtain

pipPY, V' (2.63)
Olx Or cis

If we take equation (8.63) and substitute it into equation (8,61), then, Pe is

equal to the stationary pressure of the environmental gases surrounding a jet:
O___O+ ___ _ _ _ o ,' 7

0- + V _1P
Ox Or PO &Z Or

IO7~ ~ -(8.64)..a U.....

The mean square of the pulsation velocity component, UUrepresents the axia

turbulence flow strength. According to the theory of measurement of similar turbu-
lence flows in various different directions, -7 The static pressure of the

environmental gases surrounding the Jet, Pe= a constant, and the turbulence flow

shear force, v. -rm--w -P a. Therefore, equation (8.64)

can be simplified to be the turbulence flow boundary layer momentum equation

a-__ +, Y-_±o _[,
Dr 8r pr Oar (8.65)

The turbulence flow boundary layer continuity equation is

O(Q (r9) O 9 _O(,o)

OxZ Or OOx(8.66)

Sec 6 Integral of Momentum Equations for Round Aperture Jets

If we take pr and, by successive multiplications of the various quantities in

equation (8.65), reintegrate from r = 0 to r = 00 , and, if we declare this to be

the average time velocity vector, u, without any additional force from v, then,

we can simply write r..-

* pur -Lu d, + P?-L' dr 'r_ d
4Or (S.67)
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~Pur -r - IAi 2 zrdrpu2 ,

-LUdr PUVr - paor drOu t. is Or

___ 1. d - -

The axial momentum flow rate

M - 2 xrdrpjo'

if we substitute this into equation (8.67), then it is possible to obtain

- x

Therefore, M = a constant. (8.68)

This proves that the momentum flow rate of a jet, along the axial direction, x, is

conserved, that is to say,

M - M. - urlptg.

if we assume that (u/u.) - t(,?) - 1, '7 - L; U.=ZFx, bOCx'.
b (8.69)

If we take equations (8.69) and substitute them into equation (8.68), then, we

obtain

;.pX b~2~ 7 d~ (8.70)

In equation (8.70), the non-dimensional momentum flow rate of an axially sym-

metrical jet

J~z7f''- a cons-.an-,

2 2
Therefore, the preceding coefficient, uamb ,is necessarily unrelated to x, that is to

say that i.Cror the exponents that are written out are equal:
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gxz2
. r - , 2p + 2q O, P q

Previously, we have already made use of the fact that the jet half-width, b, is in

a direct proportion with x, so that bCx, that is to say that q = 1, and, there-

fore, p = -1.

On the basis of dimensional analysis or the theory of gas volume induction roll

up, it is possible to prove the similar rules that govern the expansion of jets,

.E..b- Cz, as well as the rule governing the attenuation and reduction Ufl

- n = an experimentally determined constant.

Sec 7 Employing £ to Obtain a Typical Curve

Assume that

r ax

f() fuU - .- "I, (8.71)

n and z are experimentally determined constants. (8.72)

Let us assume that there is an average time flow function:

Md_:,,r -= I''9--. I -xf L d€-!' fd
a X or (8.-73)

Make

If one is considering a non-compressible axially symmetrical jet, then,

0.2 -(8-75)

Because of this it is also true that
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- -(,cF' -F)- ~('j (8.76)
fX 0J2 ex

- - nF' (8,77)

According to equation (8.19), the turbulence flow dynamic viscosity

--Cbu. -- Cz - - kC - a constant
"

Because of these relationships, it is also true that the quantity, E , for a round

aperture jet, does not vary with changes in x. Due to this fact, the turbulence

flow shear force

r 5 -L .- . .. • , --

ar .P .. a"

Let us assume that the constant.(puC) k,then, it will also be true that

f- .. 0

If we take equation (8.76), equation (8.77) and equation (8.78) and substitute

them into equation (8.65), and, moreover, if we determine that

then it is possible to obtain the relationship

FF' - F' - 9F (8.79)

The boundary conditions for a round aperture axially symmetrical disturbed free

jet are as follows:
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when -0, -0,
U -- . , ( F 'l f ) -- 1 , P ( ) -F '( 0 ) -- 1 ;
V-o, (F' - 0-, F(f)--F(O) -0,

when r }00, - c,

u - 0, (P'/f) - 0, F(Q) - F( ) - 0. (8.80)

If we conform to the boundary conditions in (8.80), then, the solution for

(8.79) is

I + 0.125 "

or
F~~~ --. 1+0.155

... . F' T(+ 0.25 )2 (8.81)

By employing equation (8.76), it is possible to obtain

a )-- - 0.125 g'
2(1 + o.125 ) (8.82)

Because of the fact the turbulence flow dynamic viscosity, c , (also

called the turbulence flow momentum exchange coefficient) does not vary with

changes in x, therefore, the form of the solutions for the flow speed distribution

standard or pattern function equations (8.81) and (8.82) as well as for the

boundary layersof laminar flow is the same. The difference is simply E which

is several times larger than the laminar flow dynamic viscosity, v.

In Table 8.3, b is the radius of a jet where u = 0.5 um and a

when ,--bq-.

The axial momentum flow rate is conserved as follows:

7 2drpu2 -- - ,- u rrupI

If we utilize the relationships , !, - unu-F

and substitute them into the equation above in order to simplify it, then,
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* 09.3

01 .5 .0 1.5 2.0 2.5 3.0

'7- -0.6 0.5 0.9 11.105 1.383 1.659

--- " 1 ' 0 .94 0 .79 0 .608 0 .4 0 0

-- F fo 0.228 0.346 0.328 0.221..,0087 -0.047

o .. - a - _ .,,- o .- - . -

9-OL i 3.5 I4.0 4.5 5.0 55 6.0

2 /I

'.x * - -') ..

_______________________________________ 1.94 2.21 2.49 12.762 3.04 13.315 1

0.156 0.111 0.08 0.059 0.044 0.033 0

- ,,

U.-F F . Pj0.144 -O.Mz21 0.276 -0.31 4 -0.334j-0.3471-0.4

Table 8.3

1. Round Aperture Jet Standard Curve Data Table

or

We already know-F, tlu an d  u for the standard curve, and, in such a case,

it is possible to arrive at the fact that, on the axis line, the pattern that

governs the attenuation and reduction of the maximum flow speed, U along x, is a

parabolic curve defined by the relationship um'x=a constant; this curve starts from

the end point of the core of the jet, and z> ,, wnere z is equal to the length

of the jet core. If, on the basis of Goertler's standard curve, we solve for the

integral of equation (8.83), then

S , d,-2ro, By measurement we can obtain the value

U- 1.61 18.5, and then,
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U. Z. p |

-- 5.75 .

Based on experimental observations and measurements, the ratio constant of the

jet half-width, b, as it varies with expansion, x, is C&O.1, b- 0.1z.

The coefficient of induction roll up a, - v,/us,0.026.

The induction roll up gas volume ratio (Q,'Q,)-0.32 -- , the initial
do

flow volume Q- KI.k [m'i].

Sec 8 Initial Phase Flow Speed Distribution for Circular Aperture Jets

Flowing With the Current

Let us assume that we are dealing with a jet in which a round aperture with a

diameter d - 2,a puts out an even flow speed, Uo, and in which there is an

initial momentum flow rate, Mo, (Fig 8.4). Point n is a point on the edge of the

jet nozzle. nl is the interior boundary; the angle of expansion = ai. n2 is the

exterior boundary with an angle of expansion -a,. The area between the interior

and exterior boundaries is the turbulence mixture layer. Ox is the jet aperture

axis line. The core length of the round cone-shaped jet = xo . The radius from the

axis line to the interior boundary - rl; the radius from the axis line to the ext-

erior boundary = r2 . r= the radius at a certain point in the mixture layer. The

area surrounding a round aperture jet includes gases which flow along with the cur-

rent at a flow speed _U1< U,,(Ul,/U)J -. On the axis line, the maximum

corresponding flow speed u. - Us- U,. The corresponding flow speed at

a place with a certain radius, r, is u=U-UI . At a place where

* ,the width of the mixture layer =b, and it expands along x,

forming a sharply delineated type of mixture layer. At a fixed point, x, the total

width of the mixture layer is -(r-,).

Let us assume that the corresponding flow speed ratio is

u( U-U

\U") U, - U,

The non-dimensional coordinates
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-3 - r

F2 - 1 .)~

Let us adjust the flow speed ratio between the surroundings and the jet so that

X is equal to a constant and O1<1; on the basis of a great deal of data

obtained from experimental observations and measurements, it is possible to utilize

the smallest square to induce the non-dimensional flow distribution function f( )

for different cross sections, x, and draw out similar curves to the one shown in

- Fig 8.5.

.!- ~ ~ ro - a---,,

V. U.

Fig. 8.4. Round aperture jet initial stage mixture layer.

Key: 1. Induced roll up.

T (8.85)

If we consider the case in which the jet flow speed, U., is already fixed, then,

the magnitude of the parallel flow speed of the surrounding gases, U1 , that is to

say, the magnitude of " , influences the total width of the mixture layer, F, as
well as the length of the jet core, xo . If one is considering the case in which

U1 is increased in size, and X is increased in size, then, even though X is

still smaller than one, the mixture layer is made narrower (Fig 8.6), and the angles

of expansion, -,L and :,, are both reduced in size (Fig 8.7); the core of the jet

flow, xo, is elongated. When X. 1, then, there are formed two evenly parallel

flows, the mixture layer is narrowed to nothing, and the jet core is lengthened to

infinity. After I >1, V1> U , the nozzle jet becomes a weakly induced flow.

Because of the effects of the fact that the surrounding gas flow is violently induced

to roll up on itself, the mixture layer is narrowed, and the length of the jet core
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o i

0 J 0 J 91.4 0.6 .7 O. 0J J.

Fig. 8.5. Similar flow speed distribution curves.

is shortened. The surrounding gas flow interacts with the turbulence flow by

transferring momentum to the weaker of the two flows, and, thereby, raising the

static pressure along the axis line of the jet, x; this process can continue even

to the point where it creates a positive pressure gradient (8p/8x) . In

situations where the dynamic pressure of the weak flow, 1/2pUl , cannot overcome

this positive pressure gradient, one can see the production of points of impedance,

with the appearance of counter-current flows and localized reflux areas. If one

is not dealing with a mixture layer in an environment of constant pressure, then

it is not possible to simply use the axial conservation of momentum method in order

to deal with the problem. IflmO,that is to say, if a round aperture jet flow, U..

is entering a gaseous environment which is at rest, U1
I o; then, in the mixture

layer, the flow speed distribution is still similar to the curve found in Fig'8.5.

If one is dealing with a round aperture free jet flow, so that I - 0, then the

expansion of the interior and exterior boundaries of the mixture layer can be

represented by the radius test formula below:

gi

- 0.95 - 0.09714(.B6)
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2.0

0

1.F.

Jt s -€ 12 15X

Fig 8.6

1. The Expansion of Round Aperture Jet Mixture Layers for Different Values of

- 0 ,0. 0.2 0J 0.4 0.5 0.4 *.7 0.8J

Fig 8.7

1. Changes in the Interior and Exterior Angles of Expansion in the Initial Stage

of a Parallel Flow Jet 2. Exterior Boundary 3. Interior Boundary 4. Expansion

Angle (in degrees)

11.7+ 0.158

• The induction roll up gas volume ratio is

QF I I I

S- U1 + 0.083 + 0.013 (888
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Chapter 9 Distribution of Temperature and Concentration in Jets

Sec I Potential Energy Equations for Boundary Level Laminar Flow Jets

Let us make use of the following assumptions about boundary layers:

(1) v << u; (2) (oui8z) << (&,f'8 y), (OTl8x) << (arlay).

Let us also assume that x is the primary direction of flow. Diffusion of momentum,

thermal energy and mass takes place primarily in the y direction. Let us separate

minute control bodies from the boundary layers of laminar flow (or boundary layers),

dx dy 1 , (assume that there is a dimension - 1 which is perpendicular to

the surface of the illustration). Let us check into the entry and exit energy flow

rates of the control bodies as shown in Fig 9.1 (a), (b) and (c). Let us talk for

a moment about these minute control bodies, dz dy. I

The differential of added kinetic energy due to enthalpy in the control bodie..

between the time of their entry and exit is equal to the differential of cross-

current thermal conductance plus the differential of friction energy. Let us assume

that
- u2 + ', j - ,T, di - cdT,

.(ax) - c,(aaz);

The differential of the density flow of the additional kinetic energy due to

enthalpy is equal to

+ <,, , °(

• According to the continuity equation

A (pu)2+ .A-+ (v)

+~ ~ a --L.,, -ro +o,--(i+ +P

Therefore, the energy equilibrium equation is

4
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L~x 8 2/. a. y ay \2) (9.1)

_I .

- -- 2.------

:I.I

I +
. 1 I

I . I

AT ."""-t .

3.
(b) i- " Nj

Fig 9.1

1. Entrance and Exit Enthalpy and Kinetic Energy 2. Entrance and Exit Heat

Transference 3. Entrance and Exit Heat of Friction

Due to the fact that we have assumed that the boundary layers are formed so that

V<<u ,therefore, the total temperature

2C, 2 (9.2)
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If the isobaric specific heat, cp= a constant, then, from equation (9.2), it is

possible to obtain

u=a Tol=cl  --D --y ay 2 ay -OV 2'

and, by the same reasoning, (9.3)

C .,)T T a '

The Prandtl number

Pr Ac. -S a

The coefficient of temperature conductivity is

.1.

If we take the relationships at (9.3) and substitute them into equation (9.1), then,

it is possible to obtain 8T =  OT' 8 ( 8T\

ax + PV - F a'

a y Pr a

Concerning the momentum equations of boundary layers of laminar flow, if we

compare them to equation (7.27) (in which there is no pulsation velocity component

u' or v'), it should be true that

PU - +l -- + (9.)
. By 19 ay D) 95

If one takes u and performs successive multiplications on the various quantities of

the equation above, then, after the manipulations are finished, one can obtain

Oy ~ ~ Oy 8,,' PL
o,~ ~ ~ e El aJ+ p  - ,"y,

- P -L(9.6)

Because of the boundary layers, let us assume that
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S& mO - 0,
ay 5'

Therefore,

Uand v..(~)can be ignored in any computations.

If we subtract equation (9.6) from equation (9.1), then it is possible to obtain

07 .V'87 8 p0- + pvc -T
eu, x dy -- a

+ 
(9.&

If we take Pc, and use it to perform successive multiplications on the various

quantities in the equation above, and, if we assume that P, ',, Z and ja are all

constants, then, it is possible to obtain

u L + y T +, C127

+ 42 ak )2

If one assumes that the static pressure, p, along x is invariable, then,(Op!8x)-0.

Because of the fact that the power of viscose friction which is turned into a quan-

tity of heat is much smaller than the cross flow which is turned into thermal con-

ductance, therefore, it is possible to ignore the quantity(Ou/y)' , and, due

to this fact, the thermal energy diffusion equation for a boundary layer of laminar

flow is

U -n + , 2- - 8

BY yy- (9.S)

Sec 2 rquarionp for Peat .ner~y Dissipation in Boundary Layers of Turbulent Flow

Let us consider the case of an average time quasi-stable state two-dimensional

turbulence flow field. The turbulence flow shear force r,,-r., the turbulence

flow thermal density flow qT' and, let us take the average time parameters

.4
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* plus the pulsation parameters and substitute that quantity for the instantaneous

parameters, as we see below,

u-o+u" pu-- +(pu)'. .- T+T" -

V-9+" Vpv-p,+(pv)' r;-Puv 1-- (9.95

p -- + p" - + . . "--€ p)T

Let us take the relationships at (9.9) and substitute them into equation (9.7);

then, if we are considering a case in which compressibility is not a factor, and

P= a constant, it is possible to obtain

)itaf - -2k~
ax T 8 ax .,. 01 (9.10)

+ Alu)2+ 0 4 -,pv'T'] - PV U-

Let us further assume that c,,i,,u are all constants, that the static pressure,
pr, along x, is invariable, and that(8l/a)-O; if we assume all these things,

then,

60) (9.11)
+ (;, , + JT + , )s0--

In a laminar flow, the transference of heat through molecular motion is much

smaller than the transference of heat which is due to the motion of the masses of

gas in a turbulence flow, >>i ; therefore, it is possible to ignore 1.

Concerning the final quantity in equation (9.11), this is the power dissipation

due to friction in a laminar flow plus a turbulence flow, and, after this is

converted into heat energy, this can also be ignored. Due to this fact, equation

(9.11) can be simplified to read

0 _ (L) - ETx O= coo OY' - 49Y 9.

The quantity s-- , is called the "turbulence flow coefficient of temp-

erature conductivity," and it is measured in units of (m 2/s).

If we assume that E-- -  , which is called the "turbulence flow dynamic
p
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viscosity," then the turbulence flow shear force T pE -L; from equation

(7.30), we can derive

S -- O + ADe La82(9.13)

If one makes a careful mutual comparison between equation (9.12) and equation (9.13),

and, if the "turbulence flow coefficient of temperature conductivity," ST , is

completely equal to the "turbulence flow dynamic viscosity," E , then, the two

differential equations are completely similar, and their solutions are identical;

therefore, velocity distribution is nothing more than temperature distribution.

This corresponds to a state in which the turbulence flow Prandtl number, Pr'=l.

The laminar flow Prandtl number is

Pr - " -...-

and the turbulence flow Prandtl number is

Pr' --. ire ----.

However, different gases at different temperatures have different Prandtl numbers

(Fig 9.2). The viscosity, p , is also different (Fig 9.3). If thc multiple of

turbulence flow and laminar flow viscosity is approximately equal to the multiple

of the rate of thermal conductance of turbulence flow and laminar flow, that is to

say,(pv/p)M(k/)), then, it is possible to consider Pr'_ Pr, and it is also

possible to borrow the Prandtl number for laminar flow.

Prad u I i

200 400 00 $00 1000 1200 1400 X

Fig 9.2

1. Prandtl Numbers, P,-± Follow changes in temperature, T (K)

2. Air 3. A Theoretical Value for Unity
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Fig 9.3

I. Gas Viscosity, , As It Varies With Changes in Temperature 2. Viscosity

3. Air

Sec 3 Initial Phase Temperature Distribution for Flat Mouth Jets

Let us make a consideration of this subject on the basis of what we have already

said in Chapter 8, Sec 4 and a look at Fig 8.2. Let us continue to select as the

base line 9T- 0 where _ Let us assume that Or is an experimentally
2

determined constant and that

(9.14)

T- the temperature at a certain point y in a boundary layer

--g -F F'(i') - oF",

T.- the maximum temperature inside a boundary layer

F"--, F- F'd-;

7*n- the ambient temperature outside a boundary layer

F"'- 
d 'F
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To the initial temperature of the jet

Let us assume that T,-- (T + Tf); then, the ratio of temperature
2

differentials is

-TT (9.15)
A 7, ,- T,

On the basis of Chapter 8, Sec 4, the rules governing the expansion of the width of

a boundary layer are

6. - Cyx, Cr -= a constant

K,= a constant, and the turbulence flow coefficient of

temperature conductivity is

Sr- Krb. - K.CXU,,

< 2 Jor-, (9.16)
2 %/.KTCT'

If one states that he is dealing with an average time quasi-stable state, in the

thermal energy dissipation equation for a boundary layer, the symbols do not

reappear:

c 'T + -

a: y 8yZ

If we take equation (9.14), (9.15) and (9.16) and substitute them into equation

(9.12), after the manipulations are over, it is possible to obtain

o'" + 2,,F -- 0, e... --Z
07 6' (9.17)

From equation (8.52)

F'"' + 2e'FF" - 0, 1 "__.-2,F1F" (9.1S)

If we make a comparison of equations (9.17) and (9.18), and then assume that
-- it will follow that f . F"r. "

a 8' F" u F" (9.19)

Integrating once
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InC,6' = n(F")', C,6' - (F")' (9.20)

Integrating again

C ', [F" gld, + C, •

According to the Goertler solution method in Chapter 8, Sec 4
1 2r" 1) J ,(, ) = -- 2 -e

If we take this equation and substitute it into equation (9.21), then,

(9.22)

If we utilize the following boundary conditions

when -0, AT - 0.5AT 0that is, 078-- 1;

when - o, AT -=AT-, that is, 076 - 2;

then, after we solve for C1 and C2, it is possible to obtain

AT ~ ~~~~~i _ -- . 4 "dz,
-T a - 0.5 +C 9T(9.23)

AT, 2 /7.'I
The form of this equation and the form of equation (8.55) are the same; therefore,

the temperature differential distribution and the flow speed distribution both

have similar curves (Fig 8.3). However, due to the fact that a -i, the

horizontal coordinate should be changed into gr ; this value differs from the

coordinate f in Fig 8.3 by N/ 6 times. If we assume that 8=- then,

experimental data and theoretical computations agree with each other.

Sec 4 Distribution of Normal Phase Temperature Differences for Narrow Crack

and Round Aperture Jets

According to Chapter 8, Sec 2 (Fig 8.1), let us take a look at the thermal

energy equilibrium of the integrated control layer, dxl, in the normal or pattern

stage of a jet (assume that there is a thickness - 1 which is perpendicular to the

surface of the illustration). Let us assume that the temperature differential is
.4AT--T--T.

The amount of increase in enthalpy which flows toward the control layer, dxl,

= p'cAT -• • I [kcal s),

The amount of increase in enthalpy which flows out of the control layer, dxl,
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dQ -d (IpucL1)ay [kcals],

The thermal energy which is dissipated in a turbulence flow across a control

layer =

OOY

The thermal energy equilibrium of a control layer is

pvcATdz + d (puc,AT)dy k y

The turbulence flow coefficient of temperature conductivity is

C',

Therefore,

vAT + -uAT'y - Oat (9.24)

In the pattern or normal stage, let us assume that the turbulence flow

coefficient of temperature conductivity is

87 - K7 C7Xu., [M 2/s] (9.25)

Along the x axis line, the rule governing the attenuation and reduction of the

maximum temperature differential is

(T.- Tm)-AT.-. a constar
T (9.26,

Let us assume that the non-dimensional temperature differential distribution

function is 46T0(91.) -7 -. , .- , --;z (9.27)

x Oy X
OAT "O -. , V ,o'T, V- , v 0_L (9.28)

X 49

If we take the equations from (9.35) to (9.38) and substitute them into equation

(9.34), then we can obtain
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FO + 2K,.CaoraO' - 0 (9.29)

If we assume yet again that

2.k
2 K~iTO 2 K,-C- .. LV 1 C

2 Kro -. 2 -

k, c, o have precise values determined for them by experimental measurements of
flow speed distribution, and, if we assume that

K-r, C7., OrT have precise values determined for them by experimental measurements

of temperature distribution. Equation (9.29) can be simplified to read

O +,6 - o, _- ZF (90)

If we utilize equation (8.28), then,
2FF'+". o, F" F(9.31)

Therefore, the relationship between the temperature differential and the

standardized flow speed function is

0' F"- (9.32)

If we employ the boundary conditions which follow, i.e.,

"0, u"-=u, F'-- 1. AT - AT., 0--1

and then integrate the equation above, it is possible to obtain

- -F', o: ( AT (9.33)

1 Experimentation proves that, if 6-20 or Pr-0.5, then, there is agreement with the

relationships at (9.33).

When one is considering the case of the patterned or normal stage of an axially

symmetrical turbulence flow jet, which is put out from a round aperture, the rela-
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tionship between the temperature differential distribution and the flow speed

distribution is the same as equation (9.33). Therefore, we already know Pr and

the flow speed distribution, that is to say, it is possible to obtain the tempera-

ture differential distribution.

Sec 5 Experiments on Concentration Distributions in Boundary Layers of Turbulence

Jets

In gases which mix at rest, if the gas consists of two types of gas, A and B,

then the distributions of concentration, cA and cB, are uneven. Because of molec-

ular motion, both A and B diffuse from areas in which they are highly concentrated

toward areas in which their concentrations are low. It is only necessary to have

enough time, and it is possible to reach an even mixing, that is to say, at various

points in the space, cA and cB are evenly distributed. This is called "free molec-

ular diffusion." Taking gas A as the basis, at any given instant there is a dis-

tributional lay-out for the concentration, cA. This form or lay-out can be drawn

out in the form of a concentration distribution curve.

Concerning a flat mouth or round aperture jet, when gas A is propelled into a

stationary gas B, it is obvious that the concentration of gas A will be highest

(cm) on the axis line of the jet. Because of the fact that the masses of gas in

the turbulence flow tumble over each other and pulsate, the movement of gas A in a

circumferential direction toward the surrounding environment and across the flow of

the jet produces the situation that the farther one goes from the axis line of the

jet, the lower is the concentration, cA. It is also true that the farther down the

flow one goes from the jet nozzle the lower becomes the value of cm on the axis

line. If the original flow speed of the jet, Uo, and the initial concentration of

the jet, co, do not change, and the flow speed distribution of the average time

stable state does not change either, then, in both the cross-current direction

and the parallel flow direction it is possible to attain a stable concentration

distribution. This is called "turbulence flow pulse diffusion."

Figure 9.4 represents a comparison between the distribution of the concentra-

tion ratio, c/cm, which measures the burden of carbon dioxide (C02) at various

cross sections such that X-,'b,- 10, 20, 30, 40 as it pertains to a flat moutn jet

with 26,- 3 [mun] and a width of 2 h -300 [mm] which is Dronelling carbon

dioxide (C02 ) into stationary air at an initial flow speed uo=55.9(m/s) and the

distributions of temperature differential and flow speed. YO. 5 is the vertical co-
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ordinate for a place where the flow speed u-0.5um . The weight concentration ratio

is the ratio between the weight of the CO2 contained in each unit of volume and the

weight of the air contained in it. It is possible to withdrawa sample of gas from

the jet and use a chromatograph to determine the concentration, c, of the C02 which

it contains. Or, it is also possible to use pulse lasers to illuminate and measure

flow fields, take integrated information photography for the analysis of interfer-

ence pattern spectra, and to measure the concentration distribution of CO2 . The

error in this measurement of concentration is less than or equal to 3%. From look-

ing at Fig 9.4, it is possible to see that the corresponding concentration (c/cm)

datum points for different cross sections i- (xib,) which are used to obtain measure

ments of the pattern or normal stage of a jet almost all fall on the normal curve

for temperature differential distribution. This explains the fact that the process

of turbulence flow concentration diffusion (mass exchange) and the process of

turbulence flow thermal energy dissipation are similar; however, they are very

different from the flow speed distribution (momentum exchange).

If it happens that the environment surrounding the jet itself contains carbon

dioxide in a concentration cH, then, it is possible to utilize the concentration

differential Ac - - c, On the axis line, the maximum concentration dif-

ferentialAc.-c..-cm. As far as an average time quasi-stable state

jet is concerned, the amount of a certain substance (for example, C02 ), which is

put out by each unit of width of a jet nozzle each second is M. - 2 b,%. I.

and this is a constant. If we assume that the area of a jet cross section - F,

then,

M -,PAcudF- - a constant (9.34)

Concerning a flat mouth two dimensional jet, half the height -b,dF nY' 1

and, if we use non-dimensional parameters like (u/ u.), (Ac/Ac.), (y/z),

in a non-compressible flow where p- a constant, and, if we only consider half the

jet, and recognize that the attenuation and reduction of Ac. and um along x are the

£ same, then, A'u.. :"at u dy&-U. -

-( U. . - a constant (Q 35)

Because of the fact that the flow speed ratio u/um and the ratio of concentration

differentials ac/Ac. are both normal functions, they are unrelated to x; there-

fore, the integral of equation (9.35) should be a constant. On the basis of the
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conservation of mass equation (9.34), it should be true that

a constant
(Ac.) 2 x - a constant, or Ac. - (9.36)

As far as a round aperture axially symmetrical jet is concerned, if half the height

of the boundary layers is =r, and the integrated cross section dF- 2sydy

then,

,I, ¢ u Y dv
2 ACr .. . ...... Y - a constant

,o At,, u, x

By the same reasoning, it is possible to obtain the relationship

a constant
Ac. - . (9.37)

7- :F_3b C. Gco ,0
-&T L\% -- ..

&I*.

0 0.5 l.0 1.5 L.O y],

Fig 9.4

1. Flow Speed, Temperature Differential and Concentration Distributions in the

Self-patterning or Normal Stage of a Flat Mouth Turbulence Flow Jet 2. Weight

Concentration Ratio 3. Flow Speed Distribtution 4. Temperature Differential

Distribution
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Sec 6 Concentration Diffusion Equations for Boundary Layers of Flat Mouth Jets

From a two-dimensional laminar flow field, let us separate and remove a minute

control body dzd " (there is a thickness - I and perpendicular to the

surface of the illustration). Let us take a look at the situation concerning the

non-dimensional concentration, c, of a certain substance as it occurs in the paral-

lel flow and cross-current flow of the entry and exit of control bodies (Fig 9.5).

The differential between rates of flow of a certain substance during its

entrance and exit along x

(puc dY)dX,

S+6

oon

Orr

I I

I I

Fig 9.5

1. The Situation Concerning Concentration Diffusion

The differential between rates of flow of a certain substance during its

entrance and exit along y

- -- (pvc dr)dy,ay

The cross-current diffusion density flow

Dp - D- the molecular diffusion coefficient (m2/s).ay

Because of the fact that the input and output are not in equilibrium, there are

initiated within the control bodies changes in concentration over time
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- - -(pcdxdy);

According to the conservation of mass, it is possible to write (if one assumes

that the density, p, does not change)

a= _ a ,POy". 0.,-

The incompressible, two-dimensional continuity equation is

&' y (9.39)

The left side of equation (9.38) can be expanded into

8(uc) + aoo L.U.§C + V~ +; A(8+ v), (9.0
ax ay a by Ox 8Y ' .0

If one is dealing with a stable laminar flow, then,

at
,

If we take equation (9.40) and substitute it into equation (9.38), then, it is

possible to obtain

8C ac - D c

+ I -- y -D " (9.41)

Sec 7 Concentration Diffusion Equations for Flat Mouth Turbulence Jets

Let us look at the case in which one is considering an average time quasi-

stable state non-compressible turbulence flow field. In such a case it is

possible to use the average time parameters plus the pulse parameters to replace

the instantaneous parameters as follows:
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CUa -Ca + C U

If we substitute these parameters into equation (9.41), then, it is possible to

obtain

12P2+ K!! a "2) & " Dfc: (9.42)Cz ay ax ay 9Y

In the equation above, 8(CU) and a ) represent the energy
O Oy

with which a certain type substance is transported by parallel flow and cross-

current pulsations of turbulence flow air masses; this quantity is several times

larger and stronger than the molecular motion diffusion of such a substance.

Therefore, it is possible to ignore the quantity DL

The average time quasi-stable state continuity equation is

+- 0y -.. , -r PL " + Z I'l € J Mao (9 43)
az al . ax OyJ

If we take the first two quantities on the left side of equation (9.42) and expand

them, then,

+ "- +-
ax ay

Besides this, according to the assumptions about boundary layers, the flow.speed

change gradient along x is much smaller than the corresponding gradient along y.

Therefore, it is possible to ignore the quantity a Due to this
dx

fact, equation (9.42) can be simplified to read

a- + _LC + a
z ay
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On the basis of the Taylor theory of turbulence flow, pulse concentration is

c cc~ Ir

1T- the Taylor mixing distance. 'c" -u', the cross-current pulse component

of velocity is

Oo; kXV2 ' k - a constant

If we substitute these relationships into equation (9.44), then, we can obtain

0 + 9'-2:C\ " "-, - Dy f. (9.45)

In the equations above, the turbulence flow diffusion coefficient is

D7 - [-3/,], (9.46)

The turbulence flow dynamic viscosity s[m'/s], and the Schmitt number
= e__(9.47).

If we take the three equations for the diffusion of momentum, thermal energy

and mass in the self-patterning or normal stage of a noncompressible, average time

quasi-stable state flat mouth turbulence flow jet and study them in comparison to

each other, then, they will appear as below

a o (9.13)
a TQ + V turbulence flow dynamic visosity, s

(9.13)

q: - - turbulence flow coefficient of temp-
- -  (9-12)

SY erature conductivity, ar (9.12)

turbulence flow diffusion coefficient,
" -Dr (9.45)

0y ly= (9.45)
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It can be seen that, if E, Cip and Drare all constants, then the forms of the

three differential equations above are completely similar, and the methods for

solving them are all similar. Because of this fact, the solutions for them are

completely similar. On the basis of equation (9.33), it is possible to deduce that

A Te 1 , '

8 Pr'

Therefore, if we already know 8 or the Prandtl number, Pr, then, it is possible,

by utilizing the normal functions that have already been derived in Sec 2 and

Sec 7 of Chapter 8, i.e.

(u/u,.).- F'(I)m- c-2( ), - 5 -

UM (1 + o.5 2 - -.

to directly derive the temperature differential distribution and the concentration

differential distribution in the boundary layers of flat mouth and round aperture

jets. A c = the concentration differential between a certain coordinate, y, in

a boundary layer, and the environment. acm-- the concentration differential

between values on the axis line of a boundary layer and those in the external

environment.
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Chapter 10 Rotational Jets

Sec 1 Integral Equations for Rotational Jets and Vortex Strength Numbers S

The various kinds of vortical flow devices are all designed so that, before a

jet flow leaves the jet nozzle, the vortical flow device forces the jet to rotate

so that it has a tangential component of velocity, w. The particular characteristic

about rotational jets is that their cross-current diffusion as well as their atten-

uation and reduction are both particularly fast. If the component of rotational

velocity, w, is sufficiently strong, and, along x, there is a positive pressure

gradient, then not long after the jet leaves the nozzle one can see the production

of counter-current flow and the formation of areas of reflux. This can shorten

flames and stabilize combustion. If we use cylindrical coordinates in x, r, and

B; average time components of velocity, u, v, and w, pulse components of velocity,

u', v', and w', and, if we use normal stresses u.,6'r,,*, and shear stresses of

rg,, r, (See Chapter 8, Sec 5), then, the basic jet equations are as follows:

a , -7- 77 --

-- V, u . _ u- ,' - (10.1)

F az

. .

a C

Ors r - r O

0.- +r -2 + -- 2 VW 11 U W
OX ar :- Or - ax

* If one is considering a non-compressible flow, then, it is possible to ignore the

,'---7-7" --"-

j*turbulence f low normal stresses ff ,-p' u u' pr vv sU p

as well as their derivatives. If we employ the assumptions which relate to axisym-

metric boundary layers, that is to say,

U ., 3 . , .>>.. .
Ow Ow +Or ----- 2w u
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Equation (10.3) can be simplified to be

, + 1 (,,.) (10.5)C@z Or ax Pr p,

PL- (10.6)
Ow Ow ,w 1 _ (18 +"- r._

U C- V I-(r)+.~ (1.7a r r P ar P r

If we take pr and use it to perform successive multiplications on equation

(10.5) and then integrate by r (when r=O, v=0, when r--.c, U=0):

PU.-Lz rdr + Vpvr -LU d,

2 dr z-d
~pt au r.drm ~ A pulrdr

fau4  ~ - - j (rv) d

-ud, puv --. d r,
-. Purdr

Lrdr .. ~prdr
OCr)X dx

If we then substitute into equation (10.8), it is possible to obtain

(P + u,)dr - 0, (10.9)

That is to say, along the axial direction, x, the impulse force does not vary.

Along the axial direction, x, and the radial direction, r, the static pressure, p,

is variable. It is possible to take the pressure gradient along x, divide it up

for purposes of integration and write it in the form

or"Lo -
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2 8z

-3~ prdrm- r e!2e dr ez

Substituting into equation (10.9), we get

rdr -0 (10.10)

If we take pr2 and use it to perform successive multiplications of the various

quantities in equation (10.7), and, then, integrate by r we get

r'pu kdr + r~ov I-dr + rpvwd r

- r3Or+- rr]d,

r2..--dr prdr tu 2
(L) Yzu-- wr

O((r

d.rpuwdr + a,-0")d

In the equations above, use was made of

_(U.,). (W,) + U_ /Ox Oxwr

as well as the continuity equations

• e~( ) _ _ e(! l

I' 8: Or' I
r.

- : ~~(b) ,2PV L a,-,pw - PV,'a

- pwr - -dr - p'wrdr

217



(C) 4-2

(,Z,,), 1-0.

If we take (a), (b) and (c) and substitute them into equation (10.11), then we

can obtain

A ,puwdr dT 0 (1
dz 2i dx

The physical significance of equation (10.12) is as follows: if we assume

that we are dealing with a place on a certain cross section, x, of a rotational

jet at which the radius of the cross section is r, and there is a density flow

Pu; if we assume that it is also true that the mass flow rate when the jet passes

through a minute, ring-shaped cross section :wrdr is equal to 2xrdr - ou,

and that the momentum flow rate in a circumferential direction 9 (or tangential

impulse force) = 2xrdr pu. w , and if we further assume that the

equivalent impulse force distance around x or angular momentum = 2 urdr -u -w r;

then, on the basis of these assumptions, it follows that the moment of torsional

force in the air flow around x is

T 2 j r
2 Puwdr,

and that it is conserved around x and does not vary.

From equation (10.9), we know that the impulse force along the direction of

the axis, x, is invariable and is

M(+ Pu)rdr.

If we assume that the jet nozzle has a radius=ro, then, it is possible to ob-

tain a vortex strength number to represent the strength of a rotational jet, so

that
s- -T (10.13)

M r

Sec 2 Theoretical Estimates of Flow Speed Distribution of Rotational Jets

If we assume that, on a certain cross section, x, the maximum axial flow speed
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=Um 9 thatV for . which has a radius r m b, the non-dimensional

vertical coordinate (r,'b) - ,; and, if we further assume that the maximum

tangential component of velocity = Wm, then, when the vortical strength number

S< 0.6, the principles which govern the distribution of axial components of

velocity (u/um) and tangential components of velocity (w/wm) are similar.

-o u - - .f - U, dr-bd,

If we assume that b follows the principles of expansion of x, bc x , and that

the rules governing the attenuation and reduction of components of velocity are

U.XZ1 , WOcr' (10.14)

then, equation (10.10) can be changed to read

dj(uIP -w .g,7b -d1 0 (10.15)

dx *2

It follows that

fuL{PI[ F, - I~ -) F;,]} 0 (10.16)

We can divide this into three cases, that is to say

ds(1) ij , then ± (4,&'F 1 O (10.17)

(2) U. -r W then ag o. .." It 0.8)
-dz 2

(3) ,, then, we still have equation (4.16).

From case (1):

(u b2 F,) a constant, and, from equation (10.14) we know that it is necessarily
2p + 2q-0, p -- q,*true that (10.19)

From case (2):

(b .F.F)= a constant, and, from equation (10.14), we know that it is necessarily

true that 2q + 210, q-,
(10.20)

From case (3):
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[v -r 1 24 X*

that is to say, (2q +2p -1) -(Zq +2s -1) - 01 therefore, p=s. (10.21)

Equation (10.12) can be rewritten in the form

dU..w.b 7'Zl - 0, o~r - (u,.w.,b') - 0;
dX *GI dr

(u.w..) = a .onzlar.- - x', or p + , + 3q - 0. (10.22)

Concerning utilization of the theory of induction roll up, if we assume

u.>>w. , that the flow speed of induction roll up = ve, and that half the

boundary width of a jet at a place where the axial component of velocity u = 0,

is equal to b, then, the rate of increase in the amount of gas involved in

induction roll up along x is

1"2 rdr -u - 2 v,. . (10.23)

If the gas volume ratio of induction roll up = a then, on this basis,v,-aus.,

therefore bvocbujcxrt; ,
d . b i 1 fq d ,7acz , .dx

or
p 4- 24 - I p + q therefore q 1; (10.24)

From equation (10.19) and equation (10.22), we can figure out pi--1, I-2

Therefore, the rules governing the expansion of a weak rotation jet and the

attenuation and reduction of such a jet are

hocz, U.OC w.Oc (10.25)

Sec 3 Similarities of Movement Equations in Strength Net Analysis (Limited

to Middle Range Vortex Strengths)

Let us consider the third case mentioned in the previous section in which
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um  wm .  In simplified notation, this is

du., db ,U

dx T,

1(1) -f r (10.26)
UM b-- . A(7 . Lb: -M -.. -... drbd

dx db dx b, b

We can take the various quantities in equation (10.5) and write them as functions

of - as follows

-)c d- , 2 + U T • ±'7

-.i~f =LO" it'
b

If we utilize continuity equation (10.4), then, it is possible to obtain

b) v , . r ± u-, - 10 1

If we consider the integral equation (10.6), then,

F d p.and this is equal to the pressure of the
environment of the jet

If we differentiate the equation above by x, then,

ax ar x 17 ,&

G . . 1 7" ;

(c) By differentiating the equation above, we can obtain

-- - 2ww-G - b )C',

* dG 4
G' _d G .

d,,

221

. ..,I. ,+, + ' ',. .,: i '



If we assume that (), then it is possible to obtain

_ (,..- _', + ±), _ ;
P, a, b d1

If we take (a), (b), (c) and (d) and substitute them into equation (10.5),

then, we can obtain

b b '7o

- u.,. 171 d17 - 2..w'-G
v.U b 'Ii .(. A

b G + 2L + -h ,
b 2

or

+ .b . G - , .. - • 0 (10.27)

In the equation above, the functions of , , f, g, G, h as well as their

derived functions are all non-dimensional; therefore, equation (10.27) ought to be

a non-dimensional equation. It should still also be in accordance with the rules

governing the attenuation and reduction of the flow speed of jets as well as

with the rles governing the expansion of jets as these rules are presented in

equation (10.14), that is to say,u.octz, brOC,w.aa. Let us check out the

coefficients of the various quantities involved,

Au..
U-

b- w Z 9 Xt' 1 x -I' - ; Therefore, the exponent q = 1.
we

If we utilize the conditions: p-, p+j+ 3q-0; then we can solve

for the following relationships
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Sec 4 Experimental Data on Rotational Jets

Concerning the case in which there is a continuous source of gas, if, in front

of the jet nozzle, there are placed tangential holes which supply two currents of

air, then, the presence of these currents will force the engine to put out a rotat-

ional jet. If one changes the pressure and the amount of gas involved in the two

currents of air, then, it is possible to change the vortex strength number, S, of

the rotational jet. If we utilize a five hole spherical pitot tube (or a laser dop-

pler flow speed meter) then, it is possible to investigate and make measurements of

the distributions along x and r of the flow speeds u and w as well as the static

pressure, p, in a rotational jet flow field. On the basis of the data obtained in

these investigations and measurements, it is possible to sketch out the boundary

lines of the jet (Fig 10.1). F= the half-width of the exterior boundary of the jet;

d=the diameter of the jet nozzle, assuming that the distance of the point source

inside the jet nozzle = a. It can be seen from all this that, if one raises the

vortex strength number, S, then, the rotational jet diffuses rapidly and becomes

wider. If we are dealing with a situation in which the vortex strength numberS <

0.5, the pressure gradient along x is still insufficient to produce counter-current

flow. The flow speed in the normal stage is

-- p(-K,1 ) (10.28)
U.

This is still a Gaussian normal distribution (Fig 10.2). However, when the vortex

strength number, S - 0.6, then, the point at which (u/ur) has its highest value is

no longer on the axis line, and it is moved out along the radius, r, to form a
"ring-shaped mountain." After it travels down the flow to the point where (x/d)=

15, then and only then does the "ring-shaped mountain" draw close to the axis line
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to form a single peak (Fig 10.2 Cc)). It is only necessary for the vortex strengths

I It 15 20 25 3. 35

-'3-7

0.t . F44S

6. 4vifts -. 63) Sn.5

Fig 10.1

1. Boundary Diffusion of a Round Nozzle Rotational Jet 2. No Rotation 3. With

Rotation

S'- 0. '0(1) S-0.4161
0.S

0.4.-

0 0.1 0... 0.3 0.4 0.5 0 0.1 0.2 0.) 0.4 0.5

2 (C) S 0.6
3.f

0.1 0.2 0.3, 0.4 0.3

:11,2-8.3. 3m6.2,

4-4.1, 3-2.0.

Fig 10.2

1. Distribution Curves for the Axial Flow Speed Ratio u/umn Along the Radial

Direction . s- for Different Vortical Strength Numbers, S
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S, to be equal, and the curves plotting out the changes in the tangential component

of velocity (w/win) for the different cross sections x,/d-2, 4.1. 6.2, 8.3, 1o

as they vary with changes in ?. are ali similar (Fig 10.3). When the vortex stren-

gth number, S< 0.5, it is possible to deduce, from experimental data, an empirical

formula to represent the distribution of the tangential component of velocity along

r:

-C + D. + El', - (10.29)
Z -+

In the equation above, one can obtain values for the coefficients C, D, E

by consulting Table 10.1. After the vortex strength number, S; 0.6, one begins

to see the appearance of areas of reflux (Fig 10.3(c)). The area corresponding to

the highest peak of (w/wm) is the vortical core where the boundary radius is ro .

In the case where r < is a tangential flow speed distribution with a solid

rotational form. The case in which r>- r. is a tangential flow speed distri-

bution with a free spiral form. This corresponds to the Rankine spiral or vortex

or viscous flow. If we assume that

0 6 b 1I
- F0

m - o -,

Fig 10.3

. The Distribution of the Tangential Velocity Component Ratio w/w. Along r For a

, Rotational Jet

then, the maximum tangential speed of the boundary of a non-viscous vortical core is

.'-.4

0.25
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w - rem , and * - the rotational speed of the vortical core; the maximum

tangential boundary velocity or a vortical core which has viscosity is

W--(-),,iU, circulation r

IL. U e~• --) .~ 1

W- -r [Iep(_)]Le[

If we take r to be the horizontal coordinate, then,

1 t~ e"J (10.30)= (1 - '

Therefore, when ;-0, A- 0, --) -0;

Let us assume that P- = the static pressure of the environment around a

rotational jet, that p = the static pressure at a place where there is a given

radius r, that Pm = the static pressure on the center line of a rotational jet, and

that (p-.-p)/(p.--p.) = the pressure differential ratio p.

On the basis of the dimensional analysis of the self-patterning or normal stage

characteristics of a rotational jet as it appeared in the preceding section, it is

only necessary that the vortex strength numbers S, be equal, and the distribution

of the pressure differential p for different cross sections (x/d) should also be

similar (Fig 10.4). The rule which can be induced from experimental data to

describe how the pressure differential ratio, f, varies with changes in i is

also a Gaussian normal distribution:

-- C ep( -,1.) (lU .S!)

The coefficients K1 and k2 of the exponential functions both decrease in value

along with the vortex strength number, S.
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0.1 .0- 0 0.1 0.3 00.1 0.3

Fig 10.4

Curves of the Distribution of the Pressure Differential Ratio, , Along r

At a specified cross section (xld) = a constant, the total gas flow volume of

a jet, Q and the ratio it forms with the initial jet gas volume, Qo, reflects the

induction roll up energy of the jet. The higher the vortex strength goes, the

stronger does the induction roll up energy become. Experimentation produces the

following relationship: the total amount of gas flow/the initial amount of jet

gas is

.-- - (0.32 + Q.SS) (10.32)
Q.

The rule which governs the way in which the flow speed is attenuated and reduced

along with x is

.p c !. cc (10.33)

,..[., j3W11,2m/s . a •.- I - a i

1 12.5 1.46 0.0" 7.7. 7L-3 -542

2 13.5 .5.4 O.Z.34 18.1 -98.6 138. 15.1 7.94 0.416 15.1 -7.2 75

4 16.0 10.j 6 0.60 22. -155 75

5 17.7 !12.8 .0.640 25... -- WE J59

Table 10.1

Principal Experimental Data on Rotational Jets (See equation 10.29)

2. Sequence Number 3. Initial 4. Vortex Strength Number 5. Coefficient
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Chapter 11 Jet Curvature and Coefficients of Flow Volume

Sec 1 Curvature Deformations of Main Horizontal Cross Flows of Round Aperture Jets

Let us assume that there is, on the wall of a flame tube, a round hole with a

diameter equal to d and with a center line perpendicular to the surface of the wall

. o = 900 (Fig 11.1). Because of the pressure differential between the inside and

the outside of the flame tube, the air from the exterior ring cavity passes through

the round aperture and is propelled as a jet into the flame tube. The initial flow

speed = U0 . The initial volume of flow is equal to Q0 . The jet which penetrates

horizontally into the main flow, Vo, faces into the wind and receives a blast of

dynamic pressure equal to 1/2 pV3 . The leeward face of the jet feels the

influence of the vortical curling caused by the drop in pressure in the wake of the

jet. Concerning the sides of the jet, because of the previous collision, the flow

speed, u, is already basically very low, and because of the fact that, on top of

this initial slowness, the jet is also influenced by the impact of the shear forces

from the main flow, Vo, the sides of the jet are very easily deformed. The result

of this is that the jet is gradually curved to conform to the direction of flow of

the main current. A typical cross section of the jet (See Fig 11.1, A-A) is

squeezed, flattened and rolled to become a kidney shape. On the concave surface of

the kidney shape, there later appear a pair of counter-rotational vortices.+r,-- T.

This pair of vortices develops and expands as they flow downstream and they are

weakened and dissipate only after they have flowed far down the stream. In the area

between the curvilinearly deformed jet and the main flow, due to the fact that the

effect of the turbulence flow vortical masses producing friction by rubbing together

is very strong, the induced roll up and mixing are particularly violent. Beginning

with the center of the round aperture, the curved jet can be generally divided into

three sections; I is the core of the jet, O,. This is shorter than the core of

a free jet and is slanted downstream; II is the obviously curved section. The cross

section of the jet is rapidly deformed; III is the vortical expansion section. This

is turned downstream in the direction of the main flow.

On Fig 11.1, 0s - the axial line of the jet. This line is the maximum flow

speed, Um, for the various cross secions connected together into a line; the ver-
tical coordinate - y. 0 c - the center line of the jet; the vertical

coordinate Yc. From the edge of the round aperture to b is the exterior boundary

of the jet; the vertical coordinate is Yb. From the center of the aperture, 0,
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the length of the arc along the axis line a s. The included angle between the jet

and the x axis - e , and the included angle between the jet and the y axis =

The width of the cross section of the jet along the axis, z - A z. The area of

the cross section of the jet = Sn. If we assume that the flow speed ratio

- (U.iV.)> 1, or that A- (V/U) < 1, then it is

possible to use the empirical formulae presented below to represent the penetration

depth

2. 3 5
--15~ 2. 5<a< 

(11.1)

Sec 2 Experimental Measurements Describing Jet Curvature Forms

Let us consider the case in which we use a transparent flame tube model on

a test bed to carry out cold air flow experiments. If we first raise the temper-

ature of the horizontally penetrating jet approximately 500C, creating a sufficient

density differential between the penetrating jet and the main jet flow, or, if we

add to the penetrating jet a tracer agent, then, by borrowing from the techniques of

schlieren photography or from measurements obtained by the use of a laser thermal

line wind speed aparatus, it is possible to draw out the axis lines of the curved

jet flow as they appear in Fig 11.2 and Fig 11.3.

Fig 11.2 is the result of measurements from a low speed continuous wind tunnel

using a round aperture jet with d = 6.5mm. The range of the flow speed ratio is

0<1< 0.152 . Due to the fact that the exterior ring cavity density p.

is larger than the density of the main flow inside the flame tube ps, P (/pI)< 1,

therefore, let us use the ratio of momentum flow rates of the main flow and the jet

to solve for

U, u:

If one considers Fig 11.2, then it is possible to deduce the fact that the empirical

formula for penetration depth is
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Fig 11.1

I. An Illustration of the Curvature Deformation of a Horizontally Penetrating Jet

As It Enters a Main Jet Stream 2. Main Flow 3. Cross Section 4. Flame Tube Wall

7/440 -- 0.0335
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Fig 11.2

1. Penetration Depth of Jet 2. Flow Speed Ratio 3. Density Ratio

Figure 11.3 is the result of the influence of the corrections of inequalities

between the density of the jet and the density of the main flow p-(p,. A), as

well as the influence of the flow coefficient, Cd, on the penetration distance

(Y/7). If one assumes that 7 = the effective diameter of the aperture, then
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Fig 11 .3

I. Penetration Distance of the Jet (The Broken Line Represents the Case in Which

We Consider Differences in Density) 2. Penetration Distance 3. Effective Diameter

of Aperture

I.- I J -,. - --

9.=,N 12.,-~

150

JrJ /J

Fig 11.4

1. Axis Line Configuration of Jets

the flow coefficient, Cd, is equal to the effective cross section of the jet gases!

the geometrical area of the round aperture which is

. <

The empirical formula for the penetration distance is
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/, ,) , , 0. _. (11.3)

-In order to control the structure

4 of the flow fields in the flame tubes,

2 (for example, the forward slant of the

12- -7 flame tube), we intentionally used

IV/ L110 baffles inserted into the sides in order

S4 t -, !to guide the air flow and make the jet

penetrate the main flow at a slant

- .j B.90 Fig. 11.4 and Fig. 11.5
6 -draw out the curved axis lines of jets

with different 6 and different a as

Fig 11.5 well as the configurations of their

1. Configuration of the center lines.

Center Lines of Jets

Sec 3 Analysis of the Curvature of Main Skew Cross Currents in Narrow Slit Jets

Let us assume that there is, on the surface of a smooth wall, a narrow slit

with a width, bo, through which a jet with an initial density of p. , a flow speed

of U0 , and an angle of slant of 6, is entering a parallel flow main flow Vo with a

density of a. The axis line of the jet flow receives an influence from the

pressure differential of the gas flow and is deformed in the form of a curve. Let

us take a differential section of the jet and analyze the balance of forces acting

on it (Fig 11.6). it is equal to the differential length along the axis line. A =

the width of the jet. Az = the thickness of the cross section perpendicular to

• the differential section of the surface x-y. The area of the cross section of the

differentiated section, S,-..4&z; the volume of the differential section -S.d.

The lateral area of the differential section -

The impulse force received from the dynamic pressure of the main flow
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Fig 11.6

1. The Equilibrium of Forces Acting on the Differential Section of Jet Flow

2. Jet Flow Cross Section

on the windward surface of the differential section I C.A1 Lp(V#sin8),

the centrifugal force produced by the curvilinear flow of the differential section

S R.ds , moreover, Cn = the gas flow resistance force coefficient,

and R = the radius of the rate of curvature of the axis line of the differentiated

section. The equilibrium of forces acting along R in the differential section is

I p"in6 -p,S.i E (1.4)
2 R

From Fig 11.6, we can see that

Y ! . t g O , i . =6 t o - V "

dx.'V/j ±TT~ (Is + yy'

(11.5)

The rate of curvature radius is

R-(] iy"'"' -o -
' • 7 (11.6)

Let us assume that the area of the initial cross section of the jet is

S.0- zB0 , where :o: to the width of the jet when it has just left the narrow

0 slit. Let us assume that, in the direction y, the momentum flow rate of the jet

(that is to say, the impulse force) is conserved and invariable, which means that
P.0US.s i . p.Lo ,sin 6,9 a cunstant ( 1:.7

Equation (11.4) can be written in the form of
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RC.Azp,t'vsiri~ - -2 PS.L" 01.8)

The conditions which apply to equation (11.7) should be 
applied to equation (11.8)

C.AzpV,R sin - -2p.Ujs.,,iRn,

Utilizing equation (11.5) and equation (11.6), we can 
obtain

." (1 + ")'"'

or - 2pI S., sin 60or OP.': C.'4Z

If we say that s in (1.9)
pV'. C-

Then, equation (11.9) can be rewritten te be

_i_ C.p.V. dr (1.10)

We already know es, 6,, pL 0 and Pol.; it ,,e consider that a precise value for Cn
can be determined by experimentation, then,

C.PV: -a cons-ant

8,p, U; sin O,

Because of this fact
2 kdx,-

By integration, we can obtain - kx + C1  (11.1l)

If one is considering Fig 11.6, then, when

2|

0, y 0 , i (,) it follows that C, -

and, because of this fact,

1_ dx /kr + ctg2Ol(1.
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If we integrate equation (11.12), it is possible to obtain the equation for the

curved axis line of the jet from a narrow slit, which is

S-~ ~I k, +ctr. - ctgO,. (11.13)

If the initial angle of slant is 8,>- then, we use a negative sign in
2

front of the square root sign. By experimentation, Cn = 1-3.

Sec 4 Analysis of the Curvature of Main Skew Cross Currents in Round Aperture Jets

At the same time that jets are being curved, they are also expanding, so that

their cross sections become kidney-shaped (Fig 11.1 A-A). The width of the cross

section, L z, varies with changes in the arc length of the axis line, s. Of course,

A z and the diameter of the round aperture, d, are in direct proprortion to each

other. On the basis of experiments made in a smoke-equipped wind tunnel it is

possible to determine an empirical equation to describe Az as it changes along the

axis line Os, that is,

'-"-J + N(-L) , N N-w" -5.2a ',

d = the diameter of the round aperture (11.14)

Let us select a differential section, ds, from the curved jet. Let us

assume that the kidney-shaped cross section has an area equal to Sn . Along ds, in

a tangential direction, the average flow speed = I (Fig 11.6). If we assume that

;p-P.-p, then, on the basis of equation (11.4), it is possible to set

out the equilibrium equation for the centrifugal forces and the aerodynamic forces

along the direction R of the radius of the rate of curvature of the differential

section, that is,

" C.. -P1 zi26 . Ax d, - - pS.d,' (11.15
2 R

* If we assume that along the flow line Os the gas flow rate of the jet (the

impulse force) remains invariable and is conserved, then, that means that,

1) Crowe sand Riesebefe, 1967 AGARD Repri.
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p,oS. ,- -dlpLr, , - on t. 5 ant. (11.16)
4

If we substitute this into equation (11.15), we can obtain

-C. VPZ sin E- U.

Also, according to what was said in the previous section

. 0 +

tgO, -

,, dv r.d as = curvaz 're R - , ' (11.18)

If we utilize equation (11.18) and equation (11.14) for the purpose of manipulating

equation (11.17), and, if, moreover, we stipulate that i-y/d, dWi-dy/d,

then, we can integrate and obtain the curved axis line equation

-ho - 2.6a"r

The aerodynamic obstruction coefficient in equation (11.19) is C.06.5.

Fig 11.7 draws out the curved axis lines for round aperture jets on the basis of

computations made with equation (11.19) and on the basis of experiments which were

done with a smoke-equipped wind tunnel; Fig 11.7 also makes a comparison of these

axis lines. Da'- 4.75, the small circles represent d-20[mm), the black dots

represent d - 14 (m-1. • a - 7.8. M ? - 16.35, the empty white triangles

represent d -o [rum], and the black triangles represent d -- 14 [mrn]. If, on the

wall of a flame tube, there is opened a crack or a hole in order to supplement

combustion or to lower the temperature, then, of course, it is to be hoped that

the penetration depth (y/d) will be as deep as possible; however, the basic

principle in this matter is that if two holes are opened across from each other

then the jets from them cannot be allowed to mutually collide or the main flow will

be obstructed and losses will be increased.
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Fig 11.7

1. Comparison of Computations and Experimental Data Determining the Curves of Round

Aperture Jets

Sec 5 Coefficients of Flow As Determined by Experimentation For Round Aperture Jets

The flow coefficient, Cd, in the preceding Sec 2 determined the effective aper-

ture radius, U, and influenced the depth of penetration, the flow distribution and

losses in pressure differential. It is possible to simulate in the laboratory the

opening of a hole in the wall of a flame tube in order to carry out cold air cir-

culation experiments to determine the flow coefficient, Cd, as is shown in Fig

11.8. The gas supply tube diameter, Dl, the cross section Sl, and the flow speed

UI, simulate the intake and exhaust of the combustion chamber or the configuration

of the interior ring cavity as well as the Reynolds number, Re. Let us make pre-

cise measurements of the round aperture diameter do, the cross section so0 and the

static pressures, Pl and P2 , for the beginning and end of the process. The contract-

ion ratio of the tube m- (S*/1) - (d/DD < I At the round aperture,

the flow lines come together and squeeze the flow which passes through the round

aperture and is gradually turned in a curved direction; not only are the flow

speeds in this type of situation uneven, they are not parallel either. Only after

one has gone somewhat downstream from the round aperture does the jet flow become

one in which the flow speeds U2 are even and parallel, the cross sections of the

jet are such that S2<S,, and the radius d2<d . The contraction

ratio of the jet is C,- (S2'S,) -(dl,dj) < 1. If we assume that the weight

of the gases supplied in the ring cavity (kg/m3 ) r, then, according to Bernoulli's

equation, the round aperture volume flow
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Figure 11.8

Determination of the flow coefficient Cd
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Q -CiS'U 2  CA, (P - P."] L-0

The round aperture weight of flow is

C vQ -C.So[2:g 7(pl - pa)]1 [kg/s] (11.21)

On the basis of flow continuity

Q - SJJ1 -, V - CS.U - M'C,,S 1U,., - MCU 2 ,

(11.22)

If we are considering a case in which there are no friction losses, then,

Therefore,

Because of losses due to friction, the actual jet flow speed U.'z V"; if

we assume that the flow speed loss coefficient is

Li2

then, the round aperture volume of flow is

Q -C'S.U;- cgisOU2 (1.)

By using U2 from equation (11.23), we can obtain

* If we make a comparison of equations (11.20) and (11.25), the coefficient of flow is

C, C , and, in general 0-.96 -0.98 (1).20

V I- M2C")

The coefficient of flow, Cd, is a function of the Reynolds number of the supplied

gas and the contraction ratio of the tube, ra. Above a certain Reynolds number, Cd
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is almost maintained as a constant. Fig 11.9 is the set of standard curves put out
by the ISA (the international standardization association) for the flow coefficients
of round apertures as they vary with changes in Re and m. The error involved in
consulting this illustration is approximately * 1%.

.nd Flow C.it
0.7..6

010+ , .4

0.60
I V l 1 W I Q , R~ e

. . .

FiT 11.9
1. ISA Standard Round Aperture Flow Coefficients

The round aperture-pressure loss differential is

" .- - - -- -g ( - -,) '" r----- * -- ,,,-,)

=~ ~ v UX, I -- ., (

1 + MC,*

M 0.05 0.10 0.15 0.20 6.25 I 0

C,f 0.598 ] 0.602 0.608 0.615 0.624 0.,

" '. 0.35 I, 0.40 . .45 0.50 o.55 . o.,
C, 0 .646 10.66 0.-- 76-, 0. , o71 .6,

Table 1 1.1

1 , . When the Air Supply Reynolds Number is Ro; 4 X|Ov, Then, Cd Is Maintained

as a Constant in a Fashion Shown Below
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Sec 6 Complex Variable Functions and Conformal Transformations as Used to

Obtain Coefficients of Contraction

If one is considering the case of a non-compressible, non-viscous two-dimen-

sional stationary flow field, then, it is possible to utilize complex variables,

complex functions and conformal transformations to solve flow line equations;

because of this fact, one can draw out flow line spectra. If we choose a coordinate

x, y, on a physical surface, then, it is possible to use a complex variable a- + iY1

to represent the location of a certain point on a flow field. If we assume that

r = the modulus of the complex variable z, and we also assume that 6 = the

amplitude angle (the angle contained between r and x), then,

+-- +iy - ,cos8 + i si) -
+ YZ$

The conjugate complex variable
-- - iy - r(coO -isiO)--r,

.7 i .... 28)

On the surface of an object z, the equal flow speed position 4' = a constant

and the flow line 0 = constant form orthagonal curve net, that is to say that the

minute mesh of curve intersections 0 - and 0'-- "2' are rectangles or

squares as shown in the narrow wall aperture flow field shown in Fig. 11.10.

If we assume that the complex velocity value
-x -u, -x - v; (11.29)

ax Ox
_ d, . OF _ dF Ox

Ox Ox Ox dx Ox

JP - - -v w; (11.30)

then, the complex flow speed is
JFw -- - U - iv - q(coB - O) - qs"ne
ds

and the conjugate complex flow speed is

-- u+iv -q(casO +isin )--qeo (33.33)
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If we take 0 to be the real number amplitude and i4 to be the imaginary

number amplitude, then, on the complex velocity value plane, a certain point

F - + i4 corresponds to a certain point on the physical surface z - (S + iy), an

example would be a certain intersection point 04'in the curve grid net. If it

is possible to find an appropriate complex function F- t(r), then it is possible

to take various points on the surface z and successively transfer them to surface

F; this is done in order to maintain the similarity of the minute forms of the grid

network as well as maintaining the equality of the angles of refraction or bending.

This is called a "conformal transformation." Obviously, when the curves representing

equal values of 4, and equal values of P on the surface, z, are conformally trans-

formed onto the surface F, they become mutually perpendicular lines. What were

originally straight lines on the surface, z, are transformed into curves on the

surface P. 9

t q- U
e, E~e

C, 24

Fig 11.10

1. A Narrow Wall Aperture Jet Field Contraction Flow Line Spectrum. 2. Exterior

Ring Cavity 3. Narrow Wall

Fig 11.10 represents the flow line spectrum of a narrow wall aperture jet in

which the flow lines are concentrated and approach each other. Let us assume that

there is a dimension perpendicular to the surface of the illustration and equal to

1, that the area of the aperture BB' - 2a, that the contraction ratio - Cc, and

that the jet contraction reaches an effective cross section area - 2aCc in which

there is an even parallel flow speed q - U. The narrow walls AB and A'B' are

extensions of the boundary flow lines. BC and B'C' are "boundary flow lines." The

flow function along the boundary flow lines is 4 - a constant; the modulus, q, of
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flow speed vector, W - a constant; pi - the static pressure of the external environ-

ment. EE' is the center line of the jet; Oo - 0, and the vertical to the narrow wall,

900. If we select BB' to open a hole, then, the velocity value on the edge,

0 = 0; the front of the hole is + 0, and the back of the hole is - 4. The flow

function along the boundary flow line A'B'C', 2-CiU, the flow function along the

boundary flow line ABC,4,l--CaU, the effective amount of flow 4a-z4.-2aC,Ufmw/s].

One can solve the boundary flow line equations in order to draw out the flow lines,

that is to say that it is possible to precisely fix the ratio of contraction C,<1.

Sec 7 Complex Variable Function Transfer Formulae

According to the theories of Schwarz and Christoffel, if one assumes that there

is a complex variable F - + i4 and that m + h7. If one is considering

the case in which there is a polygon on a surface F, let one assume that the

various vertical angles are Ot,:2" a. , and n = the number of its sides. In

such a case, the sum of all its angles is a+az+..-a6.-(x_2)r. On a surface

on the real number axis C there are coordinate points Iz, t"-(. for a

total of n separate points. In such a case, if one utilizes the formula below, then,

it is possible to take the n apex points of the angles in the polygon on surface F

and transfer them into a separate coordinate points on the real number axis

of the surface :

- K(- 
-

* * (11.32)

From Fig 11.10 it can be seen that all lines defined by equal values of 4 orig-

inate in the + 0, of the exterior ring cavity, concentrate themselves in the open

hole BB', which is l = 0, and tend toward a - 0 at which point they become an

even, parallel jet. At the point C'C, the magnitude and directions of flow speeds

are entirely the same, i.e., q - U. The boundary lines 01,and 4o form themselves

into a long thin area ACA'C', as shown in Fig 11.11 (a). In order to later solve the

flow line equations, it is necessary to first utilize the formula (11.32) to take the

long thin area and transform it into an unlimited plane above the real number axis

of the plaL The intersection point C'C is a point 11 - 0. The vertical

angle along A'C' a 1 = 0. On the basis of this fact, let us compare Fig 11.11 (a)

and (b)

242

.4W



- E. r --.4-----. +,I \ A '.
c -I, -,-ZC'.. 8" , _ a

()C _+--

7-cau'B.--S

Fig 11.11

1. Complex Function Transformation Planes. 2. Plane

__ o( Od.  or F=Kln + L (11.33)

At point B, F -0-'ikb,--- 4.U. If we take point B and transform it into -1, / ,- 0,

of plane , that is to say, = 1, then, it is possible to precisely determine

the integration constantL.---iC~aU. If we take point B' and transform it into

-- 1 , then,

-- aUKln(-1)-iC,aU, ln(-l) =2C n
K

-1 -, ,.(,'c.V/.) _ cos (2 U)+ i;, ( ),

Therefore,

C C K- ' C-aU

i

If we substitute in equation (11.33), then, we can obtain the transformation form-

ula for the planes F and ;
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F In;C2*2U -n - iCa U (11.34)

Sec 8 Terminal Velocity Loci for Boundary Lines of Flow

Let us assume that the amount of flow is a constant; if we assume this, then,

the even, parallel jet flow speed U is a constant. According to equation (11.31),

the complex flow speed is

w -dF u -iv qr-W ,

dz

Therefore,

U U A U _k (11.35)
W dF q

If we consult Fig 11.10, we can see that the farther down the flow one goes from

the aperture BB',-the lower is the-modulus of complex flow speed, q. Along the nar-

row wall A'B' and AB, the direction of the flow lines, e , is already determined;
however, the modulus increases from 0 to q. Along the boundary flow lines B'C' and

BC, the modulae of W are all equal to q; however, the amplitude angle, a , changes

continuously. On the physical plane, z, when the boundary flow line B'C'BC is

sketched out, on the U/W plane, the modulus (U/q) = 1 describes a semi-circle as

shown in Fig 11.12(a). The amplitude angle indicating the wall surface A'B' is

6 = 0. Therefore, from B' to C' the amplitude angle decreases from 0 to -/2,

and, fr9m C to B, it decreases again to -, This is called the "terminal velocity

trajectory or 1 locus" of U/W. If we assume a conformal transformation function

+ ( 1.36)

UW

If we take and 9 to be the coordinates, then, it is possible to take the
U

semi-circle on the plane - and transform it into a straight line on the surface,
W

Q, as shown in Fig 11.12(b). At the point A', which is fairly well upstream from

the opening W.O, qOU, q- . At the point B' U-q, InLi . Theq
boundary flow line B'C' gradually turns from 0 -- 0-*0 ', The flow line
CB gradually turns from - The polygon on plane Q is an open

rectangle, and it only leaves two vertical angles -a3 -M.
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Fig 11.12

The Terminal Velocity Locus Transformation Plane 2. Plane

If we utilize the transormation formula (11.32), and we compare the real number

axis, = , of Fig 11.11(b), then, it is possible to write

A2 -(Q + Q)-(C- )-4 - K(CQ- 1)-i (11.37)

By integrating equation (11.37), it is possible to obtain

Q - KArcb + L,. L - integration constant (1 1.33)

In the equation above, the cosine of the inverse hyperbola is

ATC h i(C + 1

On the boundary flow line BCC'B', q = U; therefore, Q"-In- + 0 0.
q

(11.39)

In Fig 11.12(b), the indicated point B is the origin point of the plane Q, and,

due to this fact, Q - -, , corresponding to 6'- +1, on the C plane in Fig

11.11(b); if we make a substitution in equation (11.38), then, - K-;=- n¢ - L,

giving a precise value for the integration

constant L --

Q, at point B', = 0. which corresponds to -1 on the ; plane; due to this fact,

one can obtain from the equation (11.38) the fact that
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0 - KArch(-) - ix,

Because of the fact that

chO - cos (0), Arch(-) i,;

Kx- ixr - 0,

; therefore, K = 1.

Let us take plane Q and transform it into the formula for the semi-limitless plane

above the real number axis of plane C , that is,

9 = Arch -i ==n U dI)

(Refer to Fie 11.11 (c)) (11.40)

Sec 9 Boundary Flow Line Equations and Ratios of Contraction

.hE compiex v-iocity value, F, in equation (11.34) is a function of ,

F -J(7 . " complex flow speed in equation (11.4r) W--W. , is alse a
dv

tine, i on d Z). By means of the complex variable -f+i37 let us make

i connection and link together the corresponding points on plane F and plane Q (Fir

11.11). If we eliminate the parameter ; from the two equations (11.34) and (1I.40),

then it is possible to obtain the complex function F .=(x)% which is necessary

for a conformal transformation. It is only necessary to draw out the boundary flow

lines B'C' and BC, and it is then possible to determine a precise value for the rati

of contraction, Cc; therefore, in this problem, it is not necessary to first solve

trh complex function F_ -f(), ; it is only necessary to solve boundary flow

line equations, and that will suffice.
In Fig 11.10, the B' indicated is the x, y coordinate origin point z 0 0. On

the boundary flow line B'C', the included angle between the x axis and the tangents
at the various points =6.' If we assume that the minute or differentiated are length

of the boundary flow line = ds, then,

d. -.cosf9. d{ .sin9;
di d* cos" ds s!l 6 (11.41)

a: ax I id d s( os - i sin6) -ds
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On the boundary flow line, the modulus of 
is 2 q-; if one takes a look at

equations (11.40) and (11.39), he can see that

dF- " I - ,

V!- " 
I - e d"

SdF 4 d6 dF d dF
ds d. ; .4:

di UF

On the physical plane, z, the transition B' --kC' corresponds 
to a similar transi-

tion form -1 to 0 by ; on the plane.

If we differentiate equation (11.34) 
by then, we can obtain

|=2CAU therefore U
"F :C"n

If we substitute this into equation 
(11.42), we can obtain

2C~ad~ * 2C,-

Also, from equation (11.40):

Q - 0 - Archt - ir, Arch i( + ),

- chi'(6 + w) Cos (0 + z) = -cosa,

d - sgin ad6;

Because of these facts

dO d8 . c,,8sO 9' (11-44)

If we utilize equation (11.41) for integration:

Cos'tg~d ' (I - Cos ( 14 5)

2C.a( e6td9 'Ce tl(A9 + cce) - dna]

At point C, 6-- ; therefore, x - --L, this is the length of the projection

of the boundary flow line BC' on the axis, x. Fig 11.10 is an axially symmetric
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flow line spectrum; therefore, the area of the aperture is

2a - 2Ca.+2 (2 C_,);

Because of this fact, the ratio of contraction is

.- - (11.47)
2+ t

If the included angle between the center line of the jet and the narrow wall is

3< 900, then it follows that the aperture is turned into a sort of funnel, and,

on the basis of the theoretical calculations discussed above, the coefficient of

contraction, Cc, must be a good deal larger than 0.611; if 6>90o, then, Cc must

be smaller than 0.611. The theoretically calculated values for the ratio of contrac-

tion, Cc. in the funnel shaped aperture jets for different values of can be

found in Table 11.2 along with the experimentally determined values for the same

quantities.

"J.5-1 90' 11
1 2

.- 135"1157.1 IS O-

2. x C. .85 !0. 6 6 .. , , 537- P516. S

5 v C, F.S82 0.-753 0.6&4 F.612 06O .577, .. 546 1.54I

Table 11.2

1. The Half-Arc Angle 6 of the Funnels 2. The Theoretical Ratio of Contraction,

Cc 3. The Experimentally Determined Ratio of Contraction, C'c

The opening of gas mixture apertures in the walls of flame tubes and the forming

of the impulse pressure into the shape of the mouth of a trumpet or the concentration

of flow lines to form a baffle inserted into the mouth of the apertire are all things

done in order to increase the ratio of contraction, Cc, and, by so doing, to increase

the coefficient of flow, Cd, (see formula (11.26) and Table 11.1).

The theoretically calculated values for Cc are generally smaller than the exper-

imentally determined values for Cc. This is due to the fact that the theoretical

calculations i:!nore changes in gaseous density. If one assumes that the value for

* the specific heat ratio of air is k - 1.4, on the basis of the approximate calcula-

_ tions done by the theory of jets held by Chaplygin, the ratio of contraction of

248

y~rj



a narrow wall aperture compressible jet is c~ago.71 4  (Refer to The Fluid

Dynamics of Jets, by Bo Shi Yi).
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Chapter 12 Wall Jets

Sec 1 Wall Jet Gas Film Cooling

In order to maintain the temperature of the walls of the flame tube and the

temperature of the blade surfaces of the directional vanes so that they do not exceed

the permissible limits, gas film cooling is often employed. That is to say that one

can utilize the low temperature air of the outer ring cavity to be propelled through

small apertures or narrow cracks and follow the inner walls of the flame tube (or the

surface of the blades of the directional vanes) to form a gas film. Cut off by a

metal surface, there is no contact made with high temperature air flow. Actually,

this gas or air film is a half-jet added to the boundary layer along the walls;

therefore, it is possible to distinguish between turbulence boundary layers and

parallel flow jets in order to solve for the components of velocity and, then, merge

them back together. If we assume that we are dealing with a non-compressible, two-

dimensional flow field with isobaric mixing, then, the flow speed components for the

initial stage of a narrow crack jet gas film are as shown in Fig 12.1. bo = the

height of the narrow crack. The original jet flow speed - U0 . The speed of the main

flow in the interior of the flame tube.= UH. The flow speed ratio me- (Ux/U,)> I.

01 is the boundary line of the boundary layer. O'l is the interior

boundary line of the mixing boundary layer, coordinate y1 . 0'2 is the exterior

boundary line of the mixing boundary layer, coordinate Y2 " O0'l corresponds to the

jet core; the length = xH. The width of the mixture boundary layer --bY +Y -YZ -Y1.

The thickness of the boundary layer = . In this initial stage,

the jet core and the boundary layers are separated by the main flow and the walls

flow within the gas film is small, and thermal transference is slow, consequently,

the amount of heat flow which travels from the main flow across the gas film to the

surface of the walls is also small; because of this fact, the heat shielding or

insulating effects are comparatively good. If one is dealing with boundary layers

of laminar flow, then, the heat shielding or insulating effects are even better.

Once one reaches the lower part of the jet flow core, the boundary layers merge

together, turbulence flow mixing is violent, and the effectiveness of the heat

shielding declines. Because of this fact, it is comon to employ several ordered

states of narrow crack jet gas films which overlap and transfer energy from one

to the other; this is done in order to prevent parallel flows at wall temperature

from rising.
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" The curve defining the distribution along y of the flow speed in the initial

phase of a gas film can be divided into three parts or sections:

D Within a turbulence flow boundary layer O<y< a, the distribution

is governed according to a rule of the exponent 1/7, that is,
I - (1:t+

D C

0'A4

Y E I l a , 1

Fig 12.1

1. Flow Speed Distribution in the Initial Stage of a Wall Jet 2. Flame Tube Wall

Within the jet core 8 < y <Y, the flow speed U -U, is evenly distributed.

0 Within a mixing boundary layery,<Y<Y:,the mixing of two-dimensional

parallel jets is governed by the rule:

U,

The assumption that we made previously of isobaric mixing along x is also appro-

priate in connection with a flow speed ratio %<3. If i> 3, this leads

to the narrow crack jet flow speed being too low, and, when this is true, the

exterior boundary lines of a jet curl in toward the wall surfaces, consequently,

it is not possible to assume isobaric mixing. If we take O'x' and O'y' to be the

coordinate axises, then, on the basis of the equations below, it is possible to

precisely determine the locations of the interior and exterior boundary lines of a

jet O'l and O'2:

Y- - 0.416 + 0.134m, Y; - 9.-34 + 0.134m,. (12.3)
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d ;0.27
l- M , > , using a negative sign

Si' I(12.4)

From Fig 12.1, the height of the narrow crack is

b- on + AR. 12.5)

From the three equations above, it is possible to obtain a formula for calculating

the jet core length, xH, which is

x- 40.27(O.416 + 0.13+v%)" (12.6)
b, X

Let us assume that the Reynolds number is

According to the formula for the increase in thickness along a flat surface of a tur-

bulence flow boundary layer

5
H 0.37=Z N 2 (l:.7

We already know or can select a value for mo; let us assume at the outset that

6,- 0, and let us try to figure out a first approximation value for (x. b,).

We can then take this approximate value of xH and substitute it back into equation

(12.6), then, we can calculate a second approximate value. In engineering, one

generally takes calculations to a second approximation as being adequately precise.

From equation (12.7), it can be seen that, if 6 H is generally maintained invar-

iable, and the Reynolds number, Rx, is raised, then, the jet core, xq, is extended

in length as is the length of the gas tilm which is ertective in tnermai isoiarion or

insulation. In such a case, it is possible to use several less sections of gas film

and, in this way, to economize on the amount of gas used in gas film cooling. This

intensified pressure is higher than the pressure in the exterior ring cavity of the

combustion chamber of a jet engine And, there is a possibility of raising the

narrow crack jet velocity UC > L,, this will lead to a flow speed ratio m, < I

(use a positive sign in formula 12.4). This can raise the effectiveness of
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using gas films for thermal isolation or insulation.

Sec 2 Flow Speed Distribution For Auto-modeling Phase of Wall Jets

The distribution curves along y for flow speed U, as they are measured at

different cross sections (x/bo) of a self-patterning or typical section after the

boundary layers have come together are as illustrated in Fig 12.2(a). If we use the

non-dimensional coordinates (U/Um) and (y/yk), then, the flow speed distributions

for different jet velocities, Uo, and different cross sections (x/bo) can all be

reduced to a standard curve as shown in Fig 12.2(b). The broken lines on the illus-

tration are all theoretical calculations for laminar flow in wall jets. The solid

lines show calculations based on turbulence flow.

Let us assume that UH = an even, parallel main flow speed, Uo = an original

jet velocity >U" , that Um = the maximum flow speed at any given cross section, x,

in the self-patterning or normal stage; let us further assume that (UH/U,)-, <1,

that U - the flow speed at a point with coordinate y on any given cross section, x,

in the normal stage, that (U-UH) = u which equals the flow speed differential at

a point with coordinate y on any given cross section, x, in the normal stage, and

let us further assume that (Um-UH) = um which equals the maximum flow speed

differential on any given cross section, x, in the normal stage;

60 LO _______

L4ii

-so 44 4J -
40 -1 1 13 1 Z ! Il-

-:Y.14 ( ( 161 , 2.7

30 3 15i 6-1 3..

P: 6i71 129

1 S .8 341 -

10 20 30 40 50 60 6 0.25 .3. 0.75 L.OW/U.

2- 3
~12.2 MU sM

Fig 12.2

1. The Normal Stage of a Wall Jet 2. Investigation of Distribution of Flow Speed

U (m/s) 3. The Normalized Distribution of Flow Speed 4. Laminar Flow 5. Tur-

bulence Flow
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yJ the vertical coordinate of a point where p on any given cross

section, x, in the normal phase. If we consider the gas film of wall jets to be

similar non-compressible, viscous laminar boundary layers, and assume that ''--/p,
then, the set of motion equations is as presented below:

The boundary conditions are:
o_ .. y when ,

. + - .- when y --O09 *P, uu- ._, ....

If we employ normalized variables, then,

(U/u.) - A"" Byx
- - . -. (123)

A and B are constants, and a and F are treated as specific exponents; if we

substitute them into equation (12.8), then, it is possible to obtain an ordinary

differential equation like the one below

+F ' +-((a + I)FF"- F". -o0,

F JF'd,;(.)

The equation for the relationships when the exponents or indices are treated

as fixed is 2--a-1 (12-H) ; the flow velocity of induced roll-up is

V - -A.aj"'  [(a - 1)OF' + (a + 1) F (12.12)

2B
In equation (12.8), if we take u and perform successive multiplications on the

continuity equation (b) and then add it to the motion equation (a), we can obtain

(U(" + 2- (UV) -
B" Y- "

If we integrate the equation above along y, and employ the boundary conditions, then,

it is possible to obtain - I'u u, + U?..MVuy _LU () (12-13)

y-.C, u--0, 0,
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Therefore, A- u2dy

If we take u and perform successive multiplications of equation (12.13) and then

integrate along y from 0 to infinity, then,

OU)..

q

0- ayVI

The first quantity in the left side of the equation above can be broken down into

If we use continuity equations and then divide them up for purposes of integration,

the second quantity on the left side of the equation above can be changed to be

-M 00Ud + :u~vdy.

If we substitute into equation (12.15), then,

. L Lo: U ,0 Uy ,, +v.. Ul,,
dxr

- 3'~~, judy(1.6

From the continuity equation, the flow speed of induced roll-up is

-drudy,

dx J

If we utilize equation (6.14), then, equation (6.16) can be rewritten to be
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u(V!4"d - : °A , S CdY( u°dy
-dx * . ,s T

This can be manipulated to be

U u~d ('udy - ( iy)0. u~joU2y)} 0,

In the equation above, if we integrate various parts of the first quantity, then,

Within each integration symbol there is a factor of the constant p, so that we

obtain

pu uy dy K,

That is to say that the product of the impulse force Jx and the amount of flow G is

invariable along x. (12.17)

If we take the relationships u -u.F' AzxF ' (12.17) and substitute them into the

equation above, then,

S FF"do- a constant

and this does not vary with changes in x. Therefore, it is necessary that

3a_-2P-0 . When we compare the expression 2- a-I, in equation (12.11),

then, we can figure out that

2 - (12.3)

Let us assume that

J, A'FF".b, =K 4r; (1.19)
Je B 'pJ 'B

If we use equations (12.18) and (12.19), then, the differential equation for the

normalized flow speed distribution (12.10) can be simplified to be
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F"" + FF" + 2F 2 - 0 (12.20)

The boundary conditions are: wheno--0, F-F-Oamnd when -O, F-0. (12-21)

(12.21)

If we take F and multiply the various quantities in equation (12.20) and integrate

one time, then,

FF'+ F2F - +F'2 -C1 , from equation (12.21), C= 0.

If we take F-i and multiply the various quantities of the equation above, then, we

obtain

F-IF" + FF'--1 F_-F, - 0
2

If we integrate the equation above, we obtain

F- F ' + --F' C2 , because of the fact that 0-00, P 0,
"' 3 "

Therefore, C2 -. F!,
3

Because of this fact
F-t+ F (, - FZ) 0 (2.2:)

3

If we substitute new variables, then, V(+ T/?-5 y - F.j f.- df (12.25)

"#+ -?.-0.(12-24)
Equation (12.22) changes to become .3 (.

By direct integration, we obtain the solution for equation (12.24), which is,

[0 + C. +r-+c,'--k (yy

i1. %/3

If we utilize the boundary conditions
--,F-F-O, t-0, .,,/,0
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we can precisely determine the integration constant

C, r g - (. 2.26)

On the basis of equation (12.23), we can utimately reduce everything to F--t'

::~7(227)F. 43F".-v' .

As far as equations (12.22) and (12.27) are concerned, we can connect them by the use

of F, F' and 46 . If we designate a set of values for F, we then get a set of

corresponding set of values for F' and + ; all these sets of values are numerical.

Because of this fact, it is possible to draw out a normalized non-dimensional flow

speed distribution curve as shown in Fig 12.3.

From equation (12.19), it is possible to solve for the values

A- I , B amLr . - (12.28)

After we precisely determine the normalized flow speed function F'(4,) , then, the

three integrals below are all constants.

3

0

P, -I
0 0.2 0.4 0.6 0.6 $ .d

U 12.3 )X*' 9tjtAj

Fig 12.3

1. Laminar Flow Gas Film Normalized Flow Speed Distribution
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The amount of flow is r [<F lG pudy -" F.. L4 pJ

The impulse force is J.- PU 2 -I

Therefore, the amount of flow x the impulse force J.G

- . sL K [ Itt4 plV-
J, -

- K -

Sec 3 Temperature Difference Distribution for Wall Jet Layer Gas Films

According to the energy equation for boundary layers of laminar flow (9.8) which

is found in Chapter 9, Sec 1, if we consider that the pressure is equally distributed

along x, (Op,/ 7) - o and, if we ignore losses from the production of heat by

friction, then, the thermal energy dispersion equation is similar in form to the

motion equation (12.8)(a), that is,

UT -,, •.T~ OaT

The rate of thermal conductivity/the isobaric specific heat x the density = cop

which is, in turn, equal to the coefficient of thermal conductivity m[1 /s] (12.29)

If we assume even parallel heating, then, the temperature of the gas flow, T.,I

T.- T--AT, y-., T- .T.; the temperature of the jet gas flow at (tZ.30)

coordinate y =T, T.A- T- Te() - T 6

*. If the temperature of the wall surface of the flame tube is fixed as equal to T.,

and Y - 0, T T., then, the function for the normalized distribution of flow

speed is -U - L' -F () - F', F -- F'd4,. (12.31)U. UM.- UK
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If the indicated temperature of the wall, T. , and the temperature of the heated

gases T. are invariable, and, if we utilize the non-dimensional functions of 0

and F, then, it is possible to take equation (12.29) and turn it into

" + P , - - , , -- ; (12J2)

In the equation above, the "Prandtl" number is

This reflects the fact that the levels of momentum transference across boundary

layers and the transference of thermal energy are similar. If the Pr = 1, then the

distributions of flow speed and temperature are similar.

We can also use the rules governing diffusion of a jet along x and the attenua-

tion and reduction of flow speed, that is, .

does not vary with changes in x; the boundary conditions are

I0 V-0 - , , - I'; - 0 G , ' "

, 8- 0; -_ (12.33)

If we integrate equation (12.32) two times then, we can obtain

6-1-

xr [e CP( Pr~ Fdb) 'do 1; (12.34)

On the basis of equation (12.34), if one draws out (AT/AT..)- for Pr 1 and

Pr = 0.75 as it varies with changes in *, then, it would appear as it is

illustrated with the broken lines in Fig 12.3.
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o Chapter 13 The Wakes of Blunt Bodies

Sec 1 The Configuration of the Wakes of Blunt Bodies

In thrust augmentation zembustion chambers, the various forms of flame stabiliza-

tion devices are all blunt obstacles. The forward edge of a blunt body is a point

at which the flow of the gases is directly impeded ("watersheds"). The gas flow

divides itself up into sections and follows the surface of the blunt object until it

* reaches the rear edge of the object. At this point, the speed of the wake, u, is

lower than the flow speed, U, of the surrounding gases, and the sudden change in flow

speed upon contact with the surface causes boundary layer separation. Because of

the fact that viscosity produces vortices, there is an exchange of mass, momentum and

energy between the surrounding flow and the flow of the wake and a mixing layer or

boundary layer which is similar to that of parallel flow jets. In the vortical reflu-

areas immediately behind blunt bodies, there is a wake flow core similar to a jet cort

however, the flow speed distribution and the size of the jet core are not the same

(for counter-current even distributions see Sec 7 of this chapter). The cross-cur-

renr diffusion of the wake mixing layer gradually increases in width (see Fig 13.1).

On the external boundary of the mixing layer, y=b, the flow speed differential

U-u - u, - ; on the axis line behind a blunt object, the flow speed differential

U-u=ulm is at a maximum. The distribution of the flow speed differential, ul,

along y is governed by the rules of a Gaussian normal distribution. If we assume

that the height of the cross flow of a blunt object "--2h., then, the dynamic

viscosity of the gas =v; If it so happens that the Reynolds number of the flow is

high enough &- (U4,/,) >io,., then, the flow speed distribution is normalized if

one goes sufficiently far down the flow from the blunt object. That is to say that

the distribution of the non-dimensional velocity differential ratio (u,/ul.). along

the non-dimensional coordinates (y/ya.s) , then, it is possible to deduce a

normalized curve -! (L (-L, ye,, , and u, 0.5u,. (13.1)u, \ .,

where YO.5 (13.1)

Fig 13.2 is a comparison between the normalized curve of theoretical calculations

and the experimental data from the situation in which, in a wind tunnel generated

even flow field, there is a cylindrical body with do - 10 [un' , 1 a 50[ms],

k 2.38 :o , and the coefficient of aerodynamic blockage of the cylinder
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is C.;a 1.32 (the black spots on the illustration represent data for different

cross sections, x).

0..5. 2

-:.5 -2.0-.5-LO-0- 0 03 1.0 1.5 2O 'i)q5

Fig 13.2

The Normalized Curve for the Velocity Differential Distribution in the Wake of

a Cylindrical Body, d.-10mm

Sec 2 Theoretical Analysis of the Normalized Velocity Differentials in the Wakes

of Cylindrical Objects

Let us consider the principles governing the cross-current diffusion of wakes;

let us assume that the width, b, the rate of increase in thickness, Adb , and
4*

the component v&locity of cross-current pulsation, v', are all directly proportional

to each other, so that,

d!h db dx dx_ov _-U,
di dx dt

therefore,

dh '
,dx u

If one is considering an area sufficiently far behind a blunt object, then,

U a U, therefore d, OC

The component velocity of cross-current pulsation, v', is in direct propor-
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6.o h u~.. ..

Fig. 13.1 The cross-current diffusion of the
wake zwixing layer gradually increases in width.
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tion to ulm; because of this fact, U (13.2). If we assume that the

pressure along x is invariable, that there is a dimension of one unit perpendicular

to the surface of the illustration, and that, for a non-compressible flow, p = a

constant, then, in the wake flow, the rate of flow of matter through the

differentiated cross section y •1 is dm - udy - I p(U - u,)dy. The loss rate

for momentum in a normalized wake flow is

- udm-p u(U - u,)dy a constant (13.3)

If one goes sufficiently far down the flow from the back of a blunt object, then,

L'- . Q ; because of this fact, it is possible to write

PU IudY a constant

or

a constant (13.4)

Because of the fact that the integrated area of a velocity differential distribution

curve for a normalized wake flow

-) -7 =a constant,

therefore, it is necessary that pu.Ub- a constant; because of the fact

that we already assumed that the flow speed of the environment, U = a constant;

therefore, one can obtain

a constant and, if we substitute in equation (13.2), then,
eqution(3.2,aten

one can see that bdb-a constant , or, h-K..-7  (13.5).

In the equation above, K is a constant a precise value for which is determined

by experimentation. Because of the fact that the maximum flow speed differential,

Ulm, is directly proportional to the flow speed of the environment, therefore,

u1 - a constant U a constant U- -_n a constant (13.6)
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According to equation (8.18), if we use the Prandtl mixture distance, 1, to

represent turbulence flow shear forces:

then, in the wake of a cylindrical object, in order to draw out the minute or

differentiated control layer, it is necessary to refer to the equilibrium of

impulse forces in the control layer:

pu%.+p P udy + p (.LU) 0 (8.20)

If one goes sufficiently far downstream behind a blunt object, then,

u, << U, u a U, u' - (U - u,)'a U '- 2 U u , , v << u,;

and again, because of the fact that the flow speed of the environment, U = a

constant, therefore U/a) 0, .(aU'ay) -0; cathe basis of this, it is possible to

make the following simplification

2- Udy + ,'v 0-. (13.7)

If we use non-dimensional coordinates, so that, , then, the normalized

function

-(, - t . r; (13.8)d7

The Prandtl mixture distance is

i-pb-PK V17, p- a constant (13.9)

From equation (13.5) and equation (13.8), it is possible to obtain

K%/" ax 2x Oy KV/. (13.10)

* - , 8 . nU

If we take equation (13.10) and substitute it into equation (13.7), then, it is

possible to obtain the differential equation for the function, f, of the normalized

velocity differential ratio

a can be treated as a constant (13.11'
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The boundary conditions are as follows: on the boundary of wake flows, r - 1,

u-0, 0;

On the axes of wake flows,
ay 0'-, /-1 f-0. (13.13)

In equation (13.11), with separate variables, if-idj - ,1d . ; by integration, it is

possible to obtain

aif -- + C,
3

If we employ the boundary conditions, then, equation (13.12) allows us to obtain

--3

Because of this fact, we can also obtain the normalized function

Q ) () ) 9"

By employing the boundary conditions in (13,13), we can obtain precise values for

the constants 9a (1 - )2 " "(13.113)

By the use of experimentation, it is difficult to measure values for

u,-0, y-b , because of this fact, we can use YO.5 where uI = 0.5

Ulm

in order to draw Fig (13.2). From equation (13.15, we can deduce that

%0 .44L,

Schlichting and Reichardt have induced an empirical formula for the radii of

diffusion of flow wakes which is

-0.3J5 VCb - o0.41

*' It is possible to obtain values for the half-width of wake flows by using the

*relationship b--0.8 V7.1. on the basis of this relationship, it can also

be said that, in equation (13.5), K- C.sC . (13 17)
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Sec 3 Rules Governing the Attenuation and Reduction of Maximum Velocity Dif-

ferentials Along Axis Lines in Wake Flows

The wake from a blunt object (Fig 13.1) is vertically symmetrical along the x

axis. Vertical to the x-y plane, every unit of length of a cylindrical body

receives an aerodynamic drag or resistance equal to

D - C,Lop " 1 (13.18)
2

The aerodynamic drag or resistance which is felt by each unit of length or a

cylindrical body = the rate of momentum loss in the wake flow; because of this

fact, equation (13.4) should be equal to equation (13.18), that is,

CA -PU1 .,Ub d (13-19)

By using (13.15), we can solve for the integral of the right side of (13.19), that

is to say,

~ ( ) (2.) 0( - '4)i) - 0.45 (1320)

From equation (13.19), we can obtain

I CA-C.V - .,.u, u,. - U (13.21)2 O.9b

If we take the b from equation (13.17) and substitute it into (13.21), then, we

can obtain C,b, 1.4 vC'. (1322)

u.-Fi U1-3.3,..

o.9 × o.s V' . . V

0.66

Q " LL 2 LJJ!. T• G~ 20 40 60 80 100 120 140 160 180 .. ,,

,[ Fig 13.3 .

The Normalized Curve for the Attenuation and Reduction of the Velocity!
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(Fig 13.3 cont'd) Differential Ratio Along x in the Wake Flow From a Cylindrical

* Object 2. 0 Schlichting Experimental Data ----- Drawn Out on the Basis of

Formula (13.22)

If we make a comparison with (13.6), then, we can see that the experimental constant

-1.4VC--. (13.3). And now, it is possible to obtain precise values for the

constants in equation (13.9) and (13.10), that is

________ - .19S/ (13.24)
• 1 8 X 1.4 v/Cb

Sec 4 The Temperature Distribution in the Wakes of Heated Cylindrical Objects

If we assume that, in the wake of a cylindrical object, the temperature at a

given coordinate y = T, and that the temperature differential g,-T-T;

and, if we further assume that the temperature where y = 0 on the axis line of the

wake from a cylindrical object = Tm, and that the temperature differential in this

case is ,. - T.-T.; and, if we finally assume that the temperature of the

environment around the wake flow from a cylindrical object = TH, and that

the non-dimensional coordinate 1-/h ; then, the non-dimensional temperature

differential distribution function

V(,= - (135).

According to the Prandtl theory, the turbulence flow coefficient of thermal

conductivity, - -It the mixing distance. In a wake flow, if one wants to

draw out the minute or differentiated control layer, then, it can be done on the

basis of thermal energy equilibrium equations for control layers as they are

presented in Chapter 7, Sec 4; an example would be equation (9.34)

;, 4 t.IAv' - ,, "-- "<-" (13.26)

l " " . Oy..

Because of the fact thatv << U, u, -(U- u f one goes sufficiently far downstream

from a blunt body, then ua U ; because of this fact, the equation above can be

simplified to be
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: ',Udy + A ,, -0 (13.27)Ox 07 BY

The rate of added enthalpy for an average-time quasi-stable state wake flow as

compared with the surrounding flow is

PUC.S t,dy -' a constant [kcal/s] (13.28)

If we change this into non-dimensional form, we get

pUC"'"-h " - a constant 17 -L; (13.29)

In the normal stage of the wake flow

o \ L) i(77)dn a constant (13.30)

The equation above represents half the integrated area under the normalized

distribution curve for temperature differential. In a non-compressible flow, '

a constant; we already know that the even environmental flow speed, U = a constant,

and from (13.29), we can obtain the relationship

,.b- a constant (T, - T) a constant x., (13.31)

To = the stable and unchanging temperature on the surface of a cylindrical object,

and tOl = the original stable temperature differential.

If we can assume that the rule governing the attenuation and reduction of the

maximum temperature differential, tm, along the axis line is similar to the rule

governing the attenuation and reduction of the maximum velocity differential, then,

according to equation (13.6)

an as yet unfixed constant (13.32)

From equation (13.10) and (13.25)
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[ . I ](13,33)

If we employ the Taylor mixing distance from Chapter 9, Sec 7, then,

lI- ./-. (3.34)

If we take the equations (13.34), (13.33), (13.31) and (13.10) and substitute them

into the thermal energy equilibrium equation (13.27), then, after simplification,

we can obtain

70-2a1 ' ( _ . (13.35)
8 2af'

If we refer to equation (13.11), then,

I -(') I - -f,

and, if we make a comparison with equation (13.35), then, we can obtain

2 21

By integration, we can obtain

in8  t s +.Inc,

and, because of this fact 8=-Cv7 • On the axis line, rf --=., therefore,

C.-); <13.36) ; therefore, since we already know that the distribution function

for the normalized velocity differentials, f(1) , has a certain value, the normalized

distribution for temperature differential is

_ .Z, .
7:.

Sec 5 Laws Governing the Reduction of Maximum Temperature Differentials in

Wakes Along Axis Lines

Let us consider for a moment half the thermal energy dissipated every second
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from the surface of a cylindrical body for each unit of its length; if we assume

that C = the coefficient of thermal dissipation [kcal/m' s . K] , then,

q (1 - "X - (,3.38)

This heat flow should be equal to the rate of increase in enthalpy of the

surrounding flow, that is,

PU C'r" JI (13.39)

d (: -4'6dq~ (1- ~(13.40

If we take the expression from equation (13.17),b-o.s.VCbq, and substitute it

into equation (13.39) and we also utilize equation (13.40), then, it is possible to

obtain
IM tob, - -

0 .6 C,pU X( 0.8VC'b9X'
- 6 (. V (13.41)

C.pU C,

It is first necessary to pick precise values for the quantities: a, the coefficient

of thermal diffusion from the surface of a cylindrical body; the environmental flow

speed, U; the coefficient of aerodynamic drag or resistance of a cylindrical body,

Cx; the isobaric specific heat of gases, Cp; the radius of the cylindrical body,

and the initial temperature differential, s,- T.-To ; only after this is done

is it possible to draw out the curve for the attenuation and reduction of the

maximum temperature differential along x in accordance with equation (13.41).

Sec 6 Distributions of Typical Temperature Differentials and Speed Differentials

of Axially Symmetrical Wakes

If we assume that the blunt object in Fig (13.1) is a sphere with a diameter

d,-2r. , then, the wake behind the sphere expands symmetrically until it reaches

the limiting radius > r. If we still follow the method put forward in the

previous section, then, where ro. 5 , u,, 0.5u , and, if we assume that

U,-U--u, U. - U -- U, 1 -- 7-- TH, 7, . . -- ". !;- .

then, on the basis of the equilibrium of the impulse forces, we can obtain
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Fig 13.4

1. Temperature Distribution in the Axisymmetric Wake Behind a Blunt Object

2.' r/d,- iHaal and Hislop Experiments; ------ Calculated Temperature Differential,

------ Calculated Velocity Differential

OW . f df; (13.42)

3

Using the boundary conditions i-- , f-i , i - , 1 -0,-' --0 v f we integrate equation

(13.42), then, we can obtain

u-- = (1- .)2, (13.43)

U,-

Let us assume that

Using the method put forward in the previous section, we can obtain r-2aff(13.44)

and, if we make a comparison between this and equation (13.42), then, we can obtain

Vo ,m'- - (1 -'30) (13.45)

The normalized distributions of temperature differentials and velocity differentials

in axisymmetric wakes are as shown in Fig 13.4.

270QaM



Sec 7 Shapes of Back-Flow Areas Behind Blunt Objects in Conduits

In combustion chambers, one often uses the vortical reflux areas behind blunt

objects for the purpose of providing a source of continuous ignition in order to

maintain the stability of combustion. If we assume that the interior diameter of

the round tube is = R, that the radius of the blunt object is = B, we can then

assume that the blockage ratio, #-(B/R).. *We will also assume that the even

axial flow speed for a round conduit is = ul, that the even counter-current flow

speed in the core of a wake flow is = u2 , and that the flow speed ratio is

= kllU) . The surrounding flow, at point 0 on the after edge of the blunt

object, divides up to become the mixing boundary layers 0-1-2, as shown in Fig 13.5.

The width of expansion of a parallel flow mixing layer = b, and the width ratio is

- (b.'B .Because the pressure behind the blunt object is low, the surrounding

flow rolls up on itself in an axisymmetrical fashion and forms an elongated and

flattened vortical ring. MM' is the plane of the vortical ring. 0-1 = the

exterior boundary line of the mixing layer, 0-2 = the interior boundary line of the

mixing layer, 0-3-N is the boundary line of the area of reflux flow, 0-4-N is the

dividing line between the parallel flow and the counter-current flow; on this line

the axial flow speed is u=O; however, the tangential and radial flow speeds v and

w are not both equal to zero. Within mixing layers, the flow speed decreases from

uI on the exterior boundary line to zero and then changes again to be -u2 in the core

of the wake flow core. If we take O-x to be the coordinate axis, then, along the

line MM', the vertical coordinate, Yl, is positive on the exterior boundary line of

the mixture layer; the coordinates Y3 for the boundary of the area of reflux flow,

Y4 for the boundary which marks off the counter current flow, and Y2 for the

'interior boundary are all negative values.

If we assume that the non-dimensional vertical coordinate is

- 2 Y - 2, if we follow the analytical methods put
)- YZ b forward in Sec 2, then, it is possible

to obtain the non-dimensional velocity differential distribution

U ; - 1 7 Y ( 13 6 )
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Fig 13.5

I. An Illustration of the Axially Symmetrical Reflux Flow Area Behind the Blunt

Object B in a Round Tube 2. Surrounding Flow 3. Wall of thie Tube 4. Blunt

Object 5. Wake Flow Core 6. Counter-current Flow Area 7. Parallel Flow

Area 8. Axis of Symmetry

Sec 8 Estimated Measurements of the Back-Flow Areas Behind Blunt Objects in Conduits

If we refer to Fig 13.5, then, the area of reflux flow can be divided into a

forward and aft section: on the plane MM', let us take a look at 11 for the forward

section and 12 for the after section. In the 11 section, due to the fact that there

is induced roll up in the surrounding gas flow and because of turbulence flow trans-

fer, gases pass from the area of counter-current flow, across the boundary line 0-4-

N and enter into the area of parallel flow. In the 12 area, because of the fact

that there is a positive axial pressure gradient +(ap/iz) , gases are forced from

the area of parallel flow across the boundary line 0-4-N and into the arec of

counter-current flow. In average time quasi-stable state flow fields, the amount of

gas that flows out from the 11 area and out of the area of counter-current slow

should be equal to the amount of gas that flows from the 12 area and into the area

of counter-current flow. This portion of recycled gases most certainly is not

entirely from the area of counter-current flow and its gases; it is continuously

renewed in the cycle of the gases entering, being burned and being brought back in

the reflux flow. The length of the area of reflux flow is 1,- _1, + 11 . If

we take B as the basis, then, the non-dimensional length of the area of reflux

flow is 7, = (,-B) - (1,1B) + (1,"B) - -bo, (13.47). The non-dimensional
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vertical coordinate is

- 1 - ,- - 4
'Y B B B B

The non-dimensional horizontal coordinates are

, I is figured from the back edge of the blunt

B 0 object KK',

If we assume that there is isobaric mixing in the 11 section, then, we can check out

the impulse force equilibrium in the intake and exhaust of the control area KK'ZZ'

and get

pu!-(R' -'B) --pu'R:-.(EyB + J..-

+ 2a t(B + y).dy + PuW8(+.yj) .48)

For the equilibrium of gas flow in the intake and exhaust we get

pu,.(R' - Or)( B

+ Up I::I n_ - -. (13.49)

The amount of recycled gas flow in the area of reflux flow is

2p1" U(B + y)dy (13.50)

In the plane MM', if we assume that the average flow speeds of the area of

parallel flow 3--4 and the area of counter-current flow 2--4 both have equal

values a, or that the ring-shaped cross section 3- 4 = the ring-shaped cross

section 2-4 , that is to say that, then, z(B + Y)--x(B - y)2X(B + y) (13.51).I

we now take the three equations from equation (13.48) to equation (13.50) and, one

at a time, simplify them by eliminating u1, B2 and ulB2 , change them to non-

dimensional equations, take t to be the independent variable, and solve by the use

of graphs (see G.N. Abramovich, Theory of Turbulent Streams , 1960, pp 466-473.)

then, it is possible to solve for the flow speed ratio m- (u/u,)- f(l) (Fig 13.6)

and the vertical coordinates for the area of reflux flow iP it 54 as they are

distributed in *terms of changes in Z (Fig 13.7); it then becomes possible to draw

out the shape of the area of reflux flow.

According to the conditions which pertain to equation (13.51), it is possible

to solve for the flow speed ratio .-- 0.51, 1,-3.iin the plane MM'.
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Fig 13.6 Fig 13.7

1. Changes in the Flow Speed Ratio 1. Distribution of Non-dimensional

m in the 11 Section Coordinates in the 1, Section

Because this is so, in the tube or conduit, the overall length, 1C* of the area of

reflux flow behind a blunt object is approximately equal to 1,= 0.s5 , or a value

four times the height B of the blunt object, that is, .I.'I&+2am4 (13.52).

The equation above is appropriate for use with the flow speed ratio 0, 0.5,

as well as a blockage ratio 8 a 0.75, B- 0.866 R (where R is the radius of the

tube or conduit). This method assumes that there is isobaric mixing, and it does

not take into consideration the influence of boundary layers along the walls of

the tube; because of these facts it is not adequately accurate.
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Chapter 14 Jet Diffusion Plumes

Sec 1 Forms of Jet Diffusion Plumes

Combustion is the result of the violent collision and compounding of molecules

of a gaseous fuel and oxygen. If the number of molecules of oxygen and gaseous

fuel is large enough (that is to say, if the environmental or ambient pressure is

high enough), moreover, if there is even mixing according to the appropriate ratio

Q for chemical reactions, and the speed of molecular motion is adequately high

(that is to say that the ambient temperature is adequately high) and, therefore,

the energy of collision is adequately large, then, combustion will be very fast.

The time occupied by combustion does not even reach one millisecond. Becaule of

this fact, when one is considering the case of even pre-mixing before combustion it

is very important to maintain control by means of the mechanism of the chemical

reaction, that is to say, by means of the Arhenius formula that relates the rate of

chemical reaction to the ratio of concentrations and temperatures.

In turbine jet combustion chambers, general or multi-purpose liquid-type fuel

is vaporized and mixed with air. This does lead to vaporization of fuel prior to

its reaching the jet nozzle or the vaporization tube; however, it is still not evenly

pre-mixed fuel. This type of vaporized fuel jet is diffused into and interacts

with the surrounding air in the form of combustion, and this is called a jet

diffusion plume. It is important that the speed of combustion be decided on the

basis of the speed of turbulence diffusion mixing. Fig 14.1 is an illustration

of the diffusion plume of a round-aperture jet. Fig 1.2 shows the jet plume used

in a combustion chamber. The length of the plume is L.

JI

Fig 14.1

1. Illustration of the Diffusion Plume of a Round Aperture Jet 2. In the

Environment 3. Boundary of the Jet 4. Flame Tip
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Let us assume that the diameter of the jet nozzle is d-2,. , that

the uniform jet flow speed in the nozzle is Uo, that the original concentration of

the gaseous fuel is co, and that the original temperature is To . The length of the

jet core is xo . An axisymmetric disturbed jet flow field can be divided into two

areas or regions; I is an area which only has fuel and fuel that has already been

burned in it. II is an area that only has oxygen and already burned fuel in it.

The layer that divides the two areas is called the "flame tip or peak", that is to

say, the surface of the flame; this surface is called 4 . On the flame tip, " ,

T = T , which is the maximum temperature of combustion. The concentration, cl,

of the fuel within in the surface of the flame tip diffuses in the direction of the

surrounding environment. The concentration of oxygen which is contained in the

surrounding environment diffuses toward the flame tip and is called c2 o Because the

chemical reaction is very fast, in fact occupying almost no time at all, cl and c2
combine according to the appropriate chemical ratio, D , and, when they diffuse

toward and reach the surface, , they are immediately burned up and become gases

which have already undergone combustion. Because of this, on the flame tip,

, 0, e, 0 . Besides this, because of the fact that turbulence flow masses of

gas pulsate and tumble over each other, there is an exchange as heat and kinetic

energy across the surface of the flame tip. Within the flame tip and outside it,

along the direction y, the distributions of the concentrations cl and c2 , of the

temperature differential, T- To- AT and the kinetic pressure Pu2  are as

shown in Fig 14.1. Given an equal temperature, on the surface T , c = 0.

Sec 2 Unstable Heat Conduction Equations

From the midst of an axisymmetrical disturbed jet flow field, we can separate

out six fan-shaped, differentiated areas ydOdyd-dV . Let us assume that

there is only a thermal conductance flow along the radial direction y. If this is

so, then, the thermal flow which enters the control area has a differential, dV,

the rate of change of thermal energy within the control area (Fig 14.2). Let us

assume that the rate of thermal conductance for the turbulence flow k, then, the

density flow of thermal conductance is

q- - kcal,' - (4.1)
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q + -8- dy (y + dy)ddx - qydadz

&Y

" (pc,) - yadydz

aT k@T I T "

-.

Fig 14.2

Let us assume that the coefficient of thermal conductivity is

& - sr[032/1].,
P C

If this is true, then,

-- T + I8T , and r represents time (14.2)

The standard solution for the equation of unstable thermal conductivity (14.2) is

to take T and y to be the coordinates and to take r. to be the "error function"

~parameter.

4 Sec 3 Analogical Generalization of Unstable Heat Conduction Equations

According to the previous sections, i.t is possible to put forward the definition
that mo'ientum density flow -- -- T ; T - T . )- T, h ntap

differential density flow - paeAT -- #, , or
e~O;the concentration density flow "-~-"a€ , J". (14.3).

-r The mechanisms of the diffusion of temperature and concentration are the same, that

~is to say that the normalized functions for the distributions of temperature
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and concentration are same (see Chapter 9). However, the mechanisms for the

diffusion of momentum and temperature as well as concentration are not the same.

This phenomenon is a reflection of the Prandtl number, Pr and the special vortical

number, Sc; that is to say that the turbulence flow Prandtl number is

ST

The special vortical number is

- 1 (14.4)

DT

Concerning the question of the mixing of gases in combustion, it is possible to use

the values Pr = Sc = 0.75, that is to say that the turbulence flow kinetic viscosity,

6- 0.75ST - 0.75D • DT = the turbulence flow coefficient of diffusion (m
2/s)

the turbulence flow coefficient of thermal conductivity, ST The significance of

the Prandtl number Pr<1 is that, within the same interval of time, Ar , the

diffusion of thermal energy and concentration is faster than the diffusion of

momentum by quite a bit, it extends considerably farther, and it has an area of

diffusion " , which is considerably larger. There is a turbulent transference

between the section of flow which has a high temperature and a low velocity and the

section of flow which has a low temperature and a high velocity; because of this

fact, the overall enthalpy quotient for the section of flow with the high velocity

is supplemented from the outside. On a cross section of the jet, the distribution

of overall temperature is uneven, and, in places where the flow speed is high, the

overall temperature is also high. Let us assume that AI- I ,J -- 91 - DTAr.

Let us use the new variables - to replace the duration symbol, r,

in equation (14.2), and let us take zl, z2 , and z3 in equation (14.3) to be dependent

variables; if we do this, then, it is possible to write three differential equations

Ssimilar to equation (14.2), as follows,
.1

88T89 8+ (14.5)
• e8dr e{ y0Y

a7 (14.6)
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V(PAC)IM 8 (Ruac) _ 8(acA)
D~r a r,

+ (14.7)

,AS ,93 respectively represent momentum, thermal energy, and concentration

in terms of the dimensions of their respective areas of diffusion. If we make

a deduction from the relationship between 6,&t. and DT, then, it is possible for

us to acknowledge that , 2g 0.75 -3; 0.75 K() .Kx (i.S) . Equations (14.5),

(14.6) and (14.7) can all be deduced to be partial, linear differential equations

of the second degree with a parabolic form and using the dependent variable zi,

that is to say that this is a description of the equations for jet diffusion plumes:

-1, 2, 3. (14.9)04, y ay

Sec 4 Boundary Conditions for Jet Diffusion Plumes

The I area inside of the flame tip € only contains fuel and gases that have

already been burned. When x- , E. O y< l,,

s, -- '( -- _ 10

. pou.(co - c*) . (14.10)

When

puc,(T -T) .i "%'Y 0,* €(T-' O

.P.L(c,- ,) .

In the II area outside of the flame tip ,there is nothing but oxygen and

gases which have already been burned. When ., ,0 < y oo , and
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,p,,,(T - T.) .. 0" ('-m) " 0; (14.12)

T.)(c -04 c. )

9
u c'

-- ,

When Y ' 1pu,(T T.)

P _(_,--_ - 1; (14.13)

Right on the flame tip,,-' , y , - -Z 0; let us now assume that the

diffusion coefficient for fuel in turbulence flow = D1, that the turbulence flow

diffusion coefficient of oxygen = D2 , and that, along the normal line, n, of the

surface * , the diffusion density flow from the inside toward the outside and from

the outside toward the inside are both distributed in precisely the correct way, then,

-D V D,C

Because of the fact that we are dealing with asymmetrical flow fields, on

the axis line,

y- 0, -; (14.15)

Sec 5 Solution Methods for Jet Diffusion Plume Equations

If we employ the similar variable method as well as using the "Chuan Id Ye

Integration" method as well as the boundary conditions from (14.10) to (14.15),

then it is possible to solve the differential equation (14.9) and obtain the

functional equation x- , + bi(5,) (a,, b, a constant (14.16). According to Fig 7.3,

if one uses the extreme coordinates r and a of a jet line from a point source, then,

- rcosa, y-,sina, and the function for the equation above is

e(g Y, + - $in r-{,o

I (14.17)
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0

At the very tip of the plume

V(.,0) ~1-elp -Ad,] (g,.- L)
' ""(14.18)

If the initial flow speed, u., from a round aperture jet is evenly distributed

along the radius, ro, then, in the case of equation (14.17), it is possible to

consult the "probability error function table," and to utilize the numerical

integration method to obtain the solution qr(cry)

Let us assume that the isobaric specific heat is cp, that the rate of thermal

conductivity in turbulence flow is k, that the coefficient of diffusion in

turbulence flow is Di = D2 = DT and that all of them are constants; if we assume all

these things, then, if we follow the boundary conditions, we can obtain the

solution shown below:

pluG

on the axis line,
y 01 O -44 (14.19)

If we are concerned with the I area, then,

7' - 7*y

-- I - & F'' Y)
7'. - P.

F( ,, y).- [r(,, y)]-4

44

~If we are concerned with the II area, then,
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Sec 6 F.xperimentally Determined Data

If we use a shadowgraph, a sclieren instrument or a laser interference meter

in order to take some photos, then, it is possible to photograph the shape of the

flame plume turbine gallery; because of this fact, it is possible to measure the

coordinates, x 4  , y , of the surface of the flame tip * .

An analysis of the dimension of the new variable, , should be an area (1.2),

because of this fact, the function defining the relationship between t and x is

C(s) -- Kz . This K'is a constant which is determined by experimentation by the

use of the method presented below.

We already know the original kinetic pressure of the jet p, , and, if we

measure the kinetic pressure, pt. , on different cross sections along the axis

line, x, then, it is possible to obtain the equation for the relationship of the

distribution of the kinetic pressures along the axis line, that is,

'4 m!J (142')

According to the formula (14.9),Y-O, u-u.; it is possible to consult the

probability function table and figure out P4- as it increases with changes in

as well as the equation which governs the relationship that controls its

attenuation and weakening, that is,

From the functions, 1(i) and F (/F) for the attenuation and weakening
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of the kinetic pressure which can be figured from consulting tables and by the use

of empirical measurements, it is possible to draw out the relationship between g

and ./,. We can take . and i and let them be the vertical and horizontal

coordinates and, in this way, draw out the curve for them, as shown in Fig 14.3. A

method of the same type makes it possible to solve the relationship between and

. Because of this fact, it is possible to deduce the fact that ( / )--Pr.

_--
"- - z417

P,

Fig 14.3

The Curve for the Relationship Between v', and i 2. Experiment 3. Calcula-

tion

From Fig 14.3, it is possible to see that curve which represents the changes

in jf as it varies with changes in ; is almost a straight line. The rate of

slope of the straight line, tgf , can be measured out. Because of this fact,

/T - tg, tgO. A 004, or, t,,--=tp'-Kx' (14.24) . Due to this fact, if we

determine a precise value for the constant, K, and choose a value of Pr = 0.75,

:hen, from equation (14.8) g,-Pr,-Pr, , and we can determine precise values

for 1, and 9,. On the basis of the solutions for the equations (14.19), (14.20)

and (14.21), it is possible to figure out the distributions for concentration,

temperature differential and kinetic pressure along y.

Sec 7 Estimating the Length of Jet Diffusion Plumes

The formula for the mutual diffusion along the interior and exterior normal

lines of the surface of the flame tip, as shown in equation (14.14) are also
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suitable for use on the apex point of the flame plume where Y - 0, {- ,. KL'.

On the flame tip, the fuel concentration, cl, and the concentration of contained

oxygen, c2 , are both equal to zero, and the turbulence flow diffusion coefficient

D 1 = D2. At the apex point of the flame plume, the normal line, n, is nothing

else than the direction of the coordinate Because of this fact, on the basis

of equation (14.14)

or

- 0, . - (14 5)

From equation (14.20), we get

and, from equation (14.21), we get

- l- ( F ,, Y);

If we first separately differentiate (cl/co) and (c2/c ) in terms of 61 , and

then, substitute into equation (14.25). we can obtain

exp , p ].4

2c.. \p

From equation (14.26) it can be seen that the appropriate value for the chemical

ratio, 2 , is already fixed, and that the original fuel concentration, co, is

already fixed, and so it is also true that the length of the diffusion plume L of a

jet is determined by the jet nozzle do . That is to say,
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~2 2~ ___

rd, d'

~2 VrKL

a constant, do is somewhat larger, and

L is somewhat longer.

Fig 1.2 employs the two rings of quite numerous small jet nozzles which are

arranged in an interior ring and an exterior ring in the forward section of a

double ring cavity, and, although the diameter of these apertures, do, is small,

their number is large. The object of doing this is to shorten the length of the

flame plume, L, and, because of this, to shorten the length of the combustion

chamber.

In Fig 14.5(a), (b) and Fig (14.6)(a) and (b) we see a comparison between

the data obtained experimentally and the values calculated on the basis of the

methods put forward in this chapter for the calculation of the distributions of the

temperature ratio and the kinetic pressure ratio for a jet diffusion plume in two

different cross sections, i , along i '- . Fig 14.4 is a comparison between
. Tj

the distributions of kinetic pressure ratios along the axial direction as these

distributions were obtained on the basis of theoretical calculations and empirical

measurements. u --40- 70 [mis, i 6.053 - 0.12fkgig 1. T.i 1LO - IX30[K].

The fuel is propane and butane.

0.4o., - _ 4
0 4 6 a 10 12 14 16 1

U 14.4 d

Fig 14.4

1. Distribution of Kinetic Pressure Ratio Along x/d o
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Fig 14.5
1. Distribution of Kinetic Pressure Ratio Along y/ro
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Fig 14.6

1. Distribution of the Temperature Ratio Along y/r0
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Chapter 15 Turbulence Diffusion and Combustion

Sec 1 Strength of Turbulence

If one observes the boiler rooms in great storms or the black smoke which comes

out of the smoke stacks on the front of locomotives as that smoke rolls over and

over itself, as it is turned over and drawn into itself without ceasing, then one

can observe that this smoke and dust diffuses in a lateral flow and gradually

thins out to nothing. This is nothing other than the phenoerr.on of turbulence

flow diffusion. In the flame tubes of combustion chambers, the globules of vapor-

ized fuel, the fuel vapor, the oxygen, the kinetic energy, the thermal energy and

all the rest take on the vortical turbulence and are diffused over a wide area,

increase their speed of mixing and augment the combustion. When the time comes,

then, the velocity field, the concentration field, and the temperature field

all tend toward a uniform distribution. Sec 7 of Chapter 9 talks about how,

because of the influence of viscous friction, vortices can attenuate and change so

that they are split up into turbulence flows. Turbulence flow is nothing else

than an uncertain number of large and small vortical masses of gas which pulsate

and roll over and over each other. It is also possible to say that vortices are

large scale turbulence flows and that turbulence flows are vortices of small

dimensions. At a specific point in space, the vector components of flow speed,

U.,V.W , the pressure, p, the concentration, c, the temperature, T, and the

energy, E, all vary irregularly with changes in the time, t. The numerical values

which are measured by contact-type sensors are "average time" flow speed .. , ;

and pressure, P, and concentration, i, and temperature, T , and so on. Adding an

apostrophe to the angles above represents their pulsation values gv w',p'',T

and, given this, then, the instantaneous value = the average time value + the

pulsation value, i.e., U-U+u' , and other similar cases can be treated in the

same way (15.1).

If we use photoelectric methods or small inertia sensors, then, it is possible

to record instantaneous flow speeds U or pressures, p, in the form of pulsation

wave forms (Fig 15.1). According to the "mean value limit theory" of statistical

physics, if we take the mean value U as the basis, then, the chances for the

pulsation value, u', to deviate to the positive or negative direction are equal.

Because of this fact, the average statistical instantaneous value for the amount of

pulsation is
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Fig 15.1

1. Turbulence Flow Pulsation Waveform

' -- C'4: -0, (15.2)
t7

and similar cases can be figured in a similar fashion. One can see from Fig 15.1

that the positive and negative areas between the turbulence flow pulsation wave

and the horizontal line, U cancel each other out. When the area between the

pulsation wave and the axis is eliminated by the time of investigation, t, then,

one can obtain an average time flow speed, U . Let us assume that t = the

period of pulsation; if we can assume that $ > , then,

vat (15.3)

The "mean square" of the pulsation value u.. , the "mean product" --uand the "mean

square" - , can all he figured in similar ways aid are all not equal to zero.

The ratio of the pulsation flow speed "mean square root" . to the average time

flow speed U is called the "turbulence flow strength", e. A case in which the

turbulence flow strength, W , is equal along all three coordinate directions is

called a "turbulence flow field which has the same nature in differing directions."

S(15-4)
U -V 4 j ' - ,

The mean square root of the pulsation flow speed is

"" - • ." ,i: (15.5)
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Sec 2 Turbulence Scales

The distance, -ulr , which is swept out during one period, -i , of

pulsatica in which the turbulence flow air masses tumble over each other and

pulsate is called the "turbulence flow scale." However, when one is dealing with

a very large number of turbulence air flow masses of sizes ranging from quite large

to very small, then, the period of pulsation, f , or the frequency, f, are not the

same; the direction of the pulsations are not the same, and the dimension, 1, of

the air mass as well as the turbulence flow strength, i , both attenuate, dissi-

pate and change in response to changes in the space (that is to say, the time)

involved. When the frequency of pulsation of large turbulence flow air masses is

low, then, the distance which is swept out by each period of pulsation is long.

When the frequency of pulsation of small turbulence flow air masses is high, then,

the distance which is swept out by each period of pulsation is short. If one is

considering the interval between large and small turbulence flow air masses, then,

it is possible to see a mutual influence between the two kinds of air mass on the

basis of a diffusion transference of momentum, mass and energy. Because of this

fact, the behavior of each individual turbulence flow air mass is composed of random

changes, and is disorderly and unpredictable; however, it is i'ossible, on the

basis of methods involving statistical theory, to measure the "average space"

occupied collectively by turbulence flows or the characteristic of "average duration"

as is shown in the form of equations (15.4) and (15.5).

The pulsation energy for each unit of mass along the direction, x, for

turbulence flow air masses is E . u'2 ; obviously, there is a relationship between

this quantity and the pulsation frequency, f. The chances for the occurrence of the

conditions when 1 is large, f is low, and E is small, or when 1 is small, f is

high, and E is large are very small in both cases. Let us assume that the "prob-

ability amplitude" for the distribution of energy in turbulence flow air masses,

that is to say, the rate of change of the amount of kinetic energy, E, in a

turbulence flow for eacn unit of mass, as it varies with changes in f, is

EQ)- -J/d! ; if we take f to be the horizontal coordinate, then, it is
2

possible to draw out the curve defining the probability distribution as shown in

Fig 15.2. If one takes a type of sensor in which a piece of 4- 5p pure plati-

num or tungsten wire is strung across the gap between two sharp rods with a distance

of lmm between them in order to form a "heat sensitive resistor," and this is mated

to an electrical bridge in delicate equilibrium, then, this is what is called
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a "hot-wire wind speed meter." When the gas flow involved in pulsation is perpendic-

ular to the heat sensitive resistor when it passes over it, the electrical resistance

varies as a function of the cooling from the pulsation flow speed, u'. With an

oscilliscope, it is possible to record the type of pulsation flow speed waveforms

which appear in Fig 15.1. A frequency spectrum analyzer can take non-periodic

pulsation waves, u'-f() , and, according to the Chaun Li-ye integration trans-

form method, form a frequency spectrum (Fig 15.3). Fig 15.2 is a representation of

the "envelope" of the frequency spectra of Fig 15.3. From these envelope lines it

is very easy to determine the following: the frequency during pulsation, 1.

of most turbulence flow air masses which are of a representative type, The turbu-

lence flow scale, .1 , between frequencies, which corresponds to this interval, is

equal to or corresponds to the wavelength involved; because of this fact, the

interstical turbulence flow scale x the interstical frequency = the average time flow

speed, that is, Zf-1 [cm/sl (r5.6), If, by measurement, we obtain U

and I , then, it is possible to deduce the interval turbulence flow scale .

The root mean square of the pulsation flow speed, r , times the interstical or

r-al

Fig 15.2

1. Turbulence Flow Energy Probability Distribution Curve 2. Frequency Band

3. Broken Static *- . .. .

axi

Fig 15.3

1. A Block Diagram of a Spectrum Analyser 2. Heat Sensitive Resistor 3. Electric

Bridge 4. Amplifier 5. Frequency Spectrum Analyser 6. Oscilloscope

Recording Frequency Spectrum
290.4
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interval turbulence scale - turbulence diffusion coefficient D 7 - (dCI/s]. (157)

Sec 3 Mixture Distances

Prandtl theory recoenizes the fact that the cross-flow displacements of turbu-

lence flow air masses have a fixed mixing distance, 1, and that this gives rise

to the root mean square of pulsation flow speed, ' in the direction of parallel

flow as well as the root mean square of the pulsation temperature, f , and so on.

In the process of this displacement, these turbulence flow gas masses approximately

maintain their original characteristics. According to theory, the values of the

mean roots of turbulence flow pulsation, 6, 2 , and so on, for the new positions

is the differential between the average time coefficients for the new and the old

positions (Fig 15.4). Let us assume that the old position was - point A and that

the new position is at point B; if the turbulence flow gas masses move from A to

B, then, the root mean square of the pulsation flow speed is

.-dy

The root mean square of pulsation temperature is

dy

N15.4 Df0, a

Fig 15.4

1. Illustration of Mixing Distance

Because of the fact that the processes involved in the turbulence flow transference

of momentum and thermal energy, one can consider the mixing distances involved
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to be the same. The methods for measuring precise values for the mixing distance,

1, and the interval or interstical turbulence flow scale, 3 , are different

and their definitions are different; however, both represent the scale of the size

involved in the turbulence flo,. In order to solve for 1, it is necessary first

to measure the distributions of the average time flow speed and the temperature.

Sec 4 Turbulence Stress

When one is washing clothes with soap, why is it necessary to scrub them: Or,

if one is using a brush, why is it necessary to brush repeatedly? Without question,

it is because these methods make possible the use of the friction inv6lved in going

back and forth in order to take dirty clothes and scrub them out. The tumbling

over each other and the pulsation of large and small turbulence flow gas masses

is a form of scrubbing by friction. It is possible tc deduce from this the fact

that, in turbulence flow fields, the frictional forces which are exerted on the

surface of the pulsating masses of gas, also called "turbulence stress", Ir , is

much larger than the viscosity stress or force which is exerted against the surface

of the smoothly sliding masses of gas in a laminar flow field; these stresses 'Z or

forces are also called "shear forces or stresses." Because of the fact that the

pulsation of turbulence flows is erratic, confused and unpredictable, it is not

* possible to draw out the type of undisturbed flow lines which one can draw in a

laminar flow field. It is only possible to have a direction of flow and flow lines

which are decided on the basis of average time values and their scatistical

averages. On the basis of the mean square, U and the mean product ', , and so

on, it is also possible to say that there are "quasi-stable state" or average time

turbulence flow fields.

The average value of the product - the product of the average values; the

average values of the average values are still = the average value and do not

change. For example, the average time density flow - the mean product - - of the

instantaneous density flow and the flow speed. However, the average time pulsation

values ', pv'... are all equal to zero. Because of this fact, -u7- 5u, are all

equal to zero.
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p- -+ p')( + u') - + U- ' +T

+ -U AC + P I (15.10)

+ 7 - OF + 7

On the basis of the same principles,

-, -i +p) (P ' + 2 U_' + _) 71[
=pJUU4-"pu)'u' " V

pU' - - - p')(0 + u')(0 + V) • " (15.11)
- ( +pDU~+ U+ u'F +Wv)

-;-V + (p)'W . .
p== +~~ +' Sys,,+r,

p "- , r,m0 --

On the basis of the principle of the conservation of momentum and mass as well as

equations (15.10) and (15.11) it is possible to write continuity equations and

momentum equations of "average time turbulence flow fields"; however, it is

necessary to include the topic of the "influence of turbulence flow pulsation", for

example, pu', t- 7  , and so on. Fig 15.5 shows a separating out of the differenti-

ated control body ddy.., from the two-dimensional stable compressible viscous

flow field; it assumes that there is a dimension = 1 perpendicular to the surface

of the illustration. (a) represents the changes which occur when the density flow

enters and leaves the control body; (b) represents the pressure and shear stresses

which are exerted on the control body along x; (c) represents the changes which

occur in the momentum flow rate when it enters and leaves the control body along

x. The differential between the amounts of flow that enter and leave the control

bodies in stable flow fields = 0; because of this fact, we can obtain the

*' continuity equation

. ~~ ~~~~ . . .. :.. .- :,

If we take equation (15.10) and substitute into equation (15.12), then, it

is possible to obtain the average time stable state continuity equation
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Fig 15.5

1. Density Flow 2. Forces Exerted 3. Momentum Flow Rate

When the two first quantities in equation (15.13) added together = 0, this represents

the continuity equation for the stable state of an "undisturbed flow pulsation."

When the partial differentials of the turbulence flow density flow for the last

two quantities, p'"V and. 7- , added together, make zero, this represents the average

time continuity equation of a "pulsation in a flow which does have turbulence."

If we ignore gravity, stable flow fields, then, can be assumed to be so set up

j* that the surface forces which are exerted on control bodies in the direction, x,

(Fig 15.5(b)) - the rate of change of momentum entering and leaving (Fig 15.5(c)).

The momentum equations are

2L + - (Puu) + -L(put'),

r9 - ( 1 -. 14'.
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If we take equation (15.11) and substitute it into equation (15.14), then, it is

possible to obtain the momentum equation of an "average time turbulence flow field",

that is,

.LPUP + (pUIi + -[

If we employ equation (15.12), then it is possible to remove from the equation above

~.-P -+ .

If these two quantities are eliminated, then, it follows that

-+ *ir-- -.

* . L -: -: ' . .... .

In equation (15.15)

This is the viscous shear force, i' , as a gradient of change along the direction

y; p - laminar flow viscosity.

-?- 7 and - (v)'u'

These two quantities both have units of "average time pulsation momentum flow rates"

which are similar to those for the friction stresses produced by turbulence flows,

(N/m2) and those of the average time viscous shear forces, f,, ;' these are simply

called "turbulence flow stresses or forces", IT. If one is considering "turbu-

lence flow forces", according to their functional directions, they can be divided

into the positive stresses or forces which are perpendicular to the surface, (q.,),,

and the tangential or shear forces which hug the surface, ,f.,,)z. According to
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the Newtonian formula for viscous shear forces, the turbulence flow positive

force is

and the turbulence flow shear force is (15.16)

' .,)> - -

-r is called the "turbulence flow viscosity;" the unit is (kg/s.m). P71/ -V71

is called the turbulence flow kinetic viscosity, and the unit for it is (m2 /s). If

we compare equations (15.14) and (15.15), then, it is possible to see that, if one

only considers the average time values and ignores the pulsation values, then, the

momentum equations for stable laminar flow and average time turbulence flow are

completely similar. Equation (15.16) represents the forces which are exerted on

the surface of the turbulence flow masses of gas due to abrasion from friction. On

an actual material surface, the quantities .- 'K.- , and so on, represent

"rate of momentum exchange" for the pulsation in a turbulence flow; because of

this fact, ,U? is actually the "coefficient of momentum exchange". If the Reynolds

number, Re, is quite high, then, the turbulence flow stress (f,,) will be larger

than the viscosity shear force, ! , by quite a few times. Because of this

fact, if one is considering the average time turbulence flow field, then, it is

possible to ignore, tfxy. For example, let us assume that the root mean square of

the amount of pulsation is 6-0.1p,6f- - .0.1D, and that D - the diameter of the

round tube. If we make these assumptions, then, the turbulence flow shear force or

stress is (r,)7 ()V - - 0.I X 0.1U X O.1U - 10-'0U'. Working with similar

assumptions, the viscosity shear force or stress is

a,'

. ___ __ 1'5'

If is the same, then, tmlO"Re.
a'a

ID

If the Reynolds number Re 10 5 , then, ( >,,), l 10O0', , or Pr 100- a.
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The turbulence flow shear force represents the level of violence of the continuous

mixing of masses of gas. Because of this feet, the turbulence flow has a speed

of propagation which more than or equal to 100 times that of combustion flames in

combustion in laminar flows.

Sec 5 Turbulence Heat Transfer

If one is dealing with viscous laminar flow with flow lines which come from a

flow field which obeys stable principles, then, as far as cutting across the flow

lines is concerned, one can only rely on the transfer of heat by the diffusion of

molecular motion. If we are only considering the heat flow along one direction,

then, according to equation (4.2), the laminar flow stable heat flow is

q - -

a -pVt,T lkc./m' s) (15.17'

The unit which is used to measure the coefficient of thermal conductivity, I , is

(kcal/m.s.K); the density flow is p-kgmJ] , the isobaric specific heat is

c, - fIca/kg.K] ; the "coefficient of- temperature conductivity" is a-/pc; - 1m2/s],

because of these facts, equation (15.17) can be written in the form of VTa-T

In turbulence flow fields, there are no regular flow lines. In the interval

between large and small pulsating masses of gas, there are temperature gradients;

if one is involved with the transfer of heat by diffusion in turbulence flows, then,

one should use the average time coefficient 1--T, that is to say, the average time

turbulence flow heat flow, which is

q _ -p ,VT [kaI/m.,]" -(15.18)
By

According to equation (15.10),VT-- (F + v')(T + T') -(PT + ITT'+ 'T +-r) , as

presented in Sec 1 of this chapter, the average time values ' and T! which

pertain to the amount of pulsation, are both equal to zero. Let us assume that

T--T, on the basis of this assumption, equation (15.18) becomes

q - -;T- -q+

at- k(15.19)6y Oy

Equation (15.19) explains that fact that heat flow of turbulence flow fields
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includes two quantities; the first of these is a quantity which corresponds to the

stable heat transfer of molecular diffusion in equation (15.17); the second of

these quantities is the average time transfer of heat from pulsating masses of gas.

What has been presented up to now explains that fact that the viscosity of turbu-

lence flow is 100 times or more larger than the viscosity of laminar flow. Because

of the fact that the processes involved in the diffusion of heat and the diffusion

of momentum are similar, it is also true that it is only required that Re be greater

than or equal to 105, and the turbulence flow coefficient of thermal conductivity,

k, will also be larger than the of laminar flow by 100 times or more; because of

this, it is possible to ignore, ' , and only use the value of turbulence flow heat

transfer

T Ai [kcal/m' .s

(15.20)

The turbulence flow coefficient of thermal conductivity is

IeOT- ['/,], 774' T 1,

P7= AK called the thermal diffusion coefficient of turbulence flow. The

ra:i:, b :wee:- the levels of diffusion of momentum and thermal energy in pulsating

masses of gas is a basic standard of non-dimensional similarity Pr (the Prandtl

number). The Pr oi a turbulence flow field = the kinetic viscosity/the coefficient

of thermal conductivity - r - ;_ = 7- 0.7- 1.0 (15.22)
4, AdT T,

If the ratio between the viscosity of turbulence flow and the viscosity of

laminar flow, (pr/u) and the ratio between the coefficients of thermal conductivity,

(at/) , are the same, then, the Prandtl numbers, Pr, for the turbulence flow

and the laminar flow will be the same, and it becomes possible to use the Pr value

of the laminar flow for everything.

Sec 6 Turbulence Concentration Diffusion

In the combining of gases which takes place in combustion chambers, the "partial

pressure, pj, for the type of gas j is also appropriate for use with the
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equation of state of "perfect gases." Because of the fact that Ip,-p,+P;+ .. P,

it also follows that p,- rRT, R - 1.985 (kcal/ino.K] (15.23) . cj a the concentration

of the jth type of gas. The molar concentration of the mixed gases - c [mol wn]

The total density of the mixed gases =P [&4/M . The ratio between the overall

density of the mixed gases and the jth type gis (for example, vaporized fuel, f, or

oxygen, 02) is (p,/P) -- m, , and this is called the relative concentration.

Obviously, Xm, m, + m: + - 1.

Let us assume that the differentiated control body, dr',- dxdYa: ; if we assume

this, then, the mean product, Jj, of the concentration and density flow of the jth

type of gas is equal to the differential between -as it enters and

leaves dVs; this in turn is equal to the rate of change of the concentration of the

jth type of gas within dVs .

According to equation (4.3), if one is only considering the concentration density

flow of the jth type gas along the direction, y, then,

(J,),.- f-- ,om; -- D, M

- r, . (15-24)
ay

If the Reynolds number, Re 105, then, the coefficient of turbulence flow

diffusion, DT, is several hundred times larger than the D for laminar flow. The

ratio between the kinetic viscosity of turbulence flow, _0T, and DT is called the

special concentration number, Sc.

Sc = VT/DT = the level of diffusion of momentum of turbulence flow/the level of

diffusion of mass of turbulence flow =-At'_-ft (15.25)
pD7 ri

Yet another "basic standard of similarity" is called the Liu Wei-si number, Le, that

is, Le - (a/Dy) -- (Sc/Pr) . (15.26) • The coefficient of concentration diffusion

' of turbulence flow for the jth type of gas is T,- -pD7 [kgfius/ (15.27)AI
The turbulence flow viscosity, T' the rate of thermal conductance of turbu-

lence flow, k, and the coefficient of turbulence flow diffusion, Dt, are related

to the normal equation of state for turbulence flow; they are not physical prop-

erties of a gas, and are difficult to calculate theoretically. The process of

determining them by experimentation is also relatively complicated and difficult.
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Because of the fact of the similarity of the natures of the -rocesses of difft'sion
transference of momentum, mass and heat in turbulence flows, it is only necessary

that Re;t:10', and the ratio between the three coefficients of turbulence and

laminar flow,(pr/p),(/),*DCDSlD)are all values with just about the same multiples.

When there is a paucity of reliable experimental data, it is possible to borrow

the use of the basic standards of similarity with laminar flow, Pr, Sc and Le.

The coefficient of diffusion, D, for different gases in stable, laminar flow

is different. D varies with changes in the temperature, that is,

D.- ,..; .....:(15.2S)

At standard temperature and pressure, that is T,-273K,pa 760a=, the values of Do
for different gases can be seen in Table 15.1 and Table 15.2. In Table 15.2, 4'

is the unifying value against which are represented Pr, Sc and Le, as they vary with

changes in temperature, that is,

4 4,K +~ T,(Y- K. "+_LT 7,/'

." (o0c) ! D. fcm'/

SE X. i0.611

0. 0.178

4 Z- t (2o'C) co, o.160

-71F~ CH.0.196

9 Amc~i 0.089
i, c.. 0.075

// (2 CA"11 0.0;7

/2.-Xf1m co 0.1-5

Table 15.1
1 1. The diffusion Coefficients of Different Gases 2. Gas 3. Hydrogen 4. Water

* Vapor 5. Oxygen 6. Carbon Monoxide 7. Mehtyl Hydride or Methane 8. Ethane

9. Propane 10. Butane 11. Pentane 12. Carbon Monoxide
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Z . . 1
21 "t ..

7. -0-.747 . 1.04 138

S-JM( 0.? 0.72 0.___ IOX
0.74 0.2 ON102

S0.69 0.3 83X O ]S (74)

0.72 0.62 0.866 670(650)

16, EE r, 0 ,3 D.77 1.9,

Table 15.2

1. The "Basic Principles or Standards of Similitude" Between Different Gases

2. Gas 3. Air 4. Oxygen 5. Nitrogen 6. Carbon Monoxide 7. Hydrogen

8. Water Vapor 9. Carbon Dioxide 10. Methyl Hydride or Methane 11. The

Constant, K, in the Formula,

Sec 7 Turbulence Field Continuities and Momentum Equations

If we base our explanation on the three analytical equations presented

previously, i.e., (15.13), (15.15) and (15.19) as well as (15.24), then, as far as

turbulence flow fields are concerned it is possible, on the basis of a comparison

with stable laminar flow fields, to make use of the average time density flow, PT

the average time momentum flow rate, 3 , the average time flow of heat,

-0; ;7T as well as the average time concentration density flow of the

jth type of gas, _ , and write quasi-stable state, average time continuity

equations, momentum equations, thermal transference equations and concentration

diffusion equations. Because of the fact that the turbulence flow viscosity, Pro

the turbulence flow rate of thermal conductance, k, and the turbulence flow

diffusion coefficient, DT, are ali several hundred times larger than the correspond-

ing numerical values for stable laminar flow fields, i.e., P,A , and D, when one is

figuring the distributions of the turbulence flow field average time velocities

U, ,W , the average time concentration, 41 , as well as the distribution

for the average time temperature, T for this type of flow field, then it is

possible to ignore the viscosity, t , the rate of thermal conductivity, I.
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and the coefficient of diffusion, D, as they pertain to molecular motion in a

stable laminar flow.

In the three previous sections, consideration was given only to changes in

momentum and density flow in one coordinate direction. When one is analysing

the turbulence flow fields or ring-shaped combustion chambers or fields of this

type inside flame tubes, it is best to use a cylindrical coordinate system in

r, ,- and z. If one states at the outset that he is dealing with a quasi-stable

state average time turbulence flow field, then, it is not necessary to add the

average time symbol (-) again to each of the individual parameters after the

general announcement has been made. The three component vectors of the velocity

vector, V , are the radial component, u, the circumferential component, v, and the

axial component, w. If we assume that we are dealing with a rotational turbulence

flow field which is axisymmetric, then, it follows that the various parameters,

such as Ps, v and T, are invariable in the circumferential direction, ,e
(1) Continuity Equations.

From a turbulence flow field, let us separate out a differentiated fan-shaped

control body,dV,;, ,redrd, as is shown in Fig 15.6. On the basis of the principle

of the conservation of mass, the differential in the rate of flow of mass into

and out of the control body = the rate of change of mass inside the control body.

If the flow out is greater than the flow of mass in, then, the rate of change of

mass inside the control body is negative. The differential in the rate of flow of

mass in the three directions, r, rO , and z (ignoring the fourth degree

differential d,d,dOd ) are as follows: the radial direction, r, is

[. O(m d, r + dr)d~ds - puridsd

a-OP dtrd~dx + q-U rd~drds
r

the circumferential direction, ,e1 , (axisymmetric) is p-p-O , and the axial

, direction is

[p" + 8(M) d]rdOdr - (ow)rd8r

The total differential in the rate of flow of mass for all three directions - the

rate of change of mass inside the control body, which is,
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8o"t') ,ji+ P& d~dedir

Or r

# 1d..ds - - f,/~ d

N I

S 15.6 3LS ,MIAV,

Fig 15.6

i. Differentiated Fan-shaped Control 
Body, ds

If we eliminate dV, ' ' r8irJZ , then, we can obtain

WOO_ ___) 0( ~ nO j.

The first two quantities 
in equation (15.29) are 

capable of being merged 
into

because of this feet, if the 
quasi-stable state average 

time turbulence flow field

is what one is dealing with, 
and the average time density, 

p, does not vary with

changes in time, and ap/af ; then, it follows that the 
continuity equation

is

. -a (rPU) + -- (PW) - 0 (15.30)
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(2) Equation of Momentum.

Let us assume that we are still using the differentiated control body

dV, - rdadrd: . If we ignore gravity, then, according to the second of Newton's

Laws, the rate of change of momentum coming into and leaving the control body -

the total of the forces exerted against the surface of the control body. Because

of this fact, if one is dealing with an axisymmetrical flow field, then, it follows

that it is possible to slice out a meridian surface, dr da , as well as a

horizontal cross section, rdO d, , and separately apply the laws mentioned above

to each case. Fig 15.7 draws out the momentum flow rate (a) going into and coming

out of the control body, dVs, along the axis, z, as well as the forces exerted

against the surface (b). The left and right end areas of dVs = rdedr ; the

bottom area = nrOds ; and the top area = (r + dr)dOdz . We will ignore the

fourth degree differential, drdrdOds . The rate of change of momentum is equal to

the total surface force, that is,

d + (PUW)jV, + O JV,

dv. + iv, + .

If we eliminate dVs from each quantity, then, we can obtain

+

+ _ r ++ + s)
+r~ + (15.31)

Ox9 nr Ox

If we take the two quantities on the left side of the equal sign in equation (15.31)

and, on the basis of the two function products (pw)wR(Pu)w, solve the differential

expansion, then, we can obtain

W /,, Ow (ou) OW-- + (P) - + + (P") L7
8:Z Or Or
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ii- ~~~~+ W, e) a ,

* ~#@2. w a2.

+(p) - + (PU)

According to equation (15.30), the quantity inside the square parentheses in

this equation = 0; it follows from this that equation (15.31) can become the axial

momentum equation

+ U

+ -p- (r7,,) + ,kgm1'), (15.3:)
r ar

Ir + d pgru,

P I+ d

as

." ...- '' (a) ali

Fig 15.7

1. Axial Force Equilibrium (dVs meridian plane projection) 2. Momentum Flow
Rate 3. Forces Exerted on the surfaces

Fig 15.8 draws out the end plane and meridian planes of dVs. (a) clearly
points out, along the radial direction, r, the momentum flow rate into and out of

the control body; (b) highlights the set up of the forces which are exerted on the

surface along the radial direction, r; and, (c) divides up the circumferential
positive forces, .e , along r. If we figure that any forces added along the
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coordinate axis have a positive sign, then, the division of the forces along r on the

* two side surfaces is

-2 gofin- d,d a a.ddrd
2

- _ _ ,ddrdz - dv,.
r 7

The rate of change of momentum is equal to the total surface forces, that is,

aOouu'> d'VI + (pu___ V, + oa(PWU' P,,- a_

O br :Ur Orr

+ dr'- iV, - om dV,.
ax r

If we eliminate dVs, then we obtain

& (Pw)U + O(PU)U + (PU) V2

Or- O_!A; [N/m'

(15.33)

If we take the left side of equation (15.33) and, according to the product of two

differentiated functions, make the expansion as follows, then,

(pw) " + U ( "-)a + (,u) A- + . O(Pu)

as as Or Or
+a(p.) r(.) (PU)

+ ~ +Uas. -.., 8g.a a

"~(r' I , .+,I + °,' U
,t 08 "8r r • tO

.-',If we employ the continuity equation (15.30), then, the quantity inside the square

parentheses in the first quantity of this equation 0 ; the momentum equation in

the radial direction is
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8a r

0 - .- (N/9, (15.34)

When one is working out the force equilibrium equation for the horizontal

cross section, rd8dr , along the circumferential direction, ,O, in the

differentiated control body, dV,-rderdu, one should be careful to consider the

fact there is an angular velocity, w , as well as a rate of angular deformation

(1/s), in the vortical core of rotational jets. Along the radius, r, the rate of

angular deformation between any two given points should be solved for 
by taking

to be the basis and then solving for the corresponding rate of angular 
deformation

(Fig 15.9); the radial component of velocity, u, does not vary with changes 
in 7

it follows from this that _ 0.

,(, w)(8, -), [1/s] corresponds to the rate of angular momentum,

it follows from this that the turbulence shear force or stress in the circumferential

direction inside the surface, rd ds of the cylinder which is perpendicular to the

radius, r, is

"-r (!. - - ,[N/l] (15.35)

(r + ir)d/

AF Fig 15.10 draws out the rate of change

Gof momentum along the circumferential

direction, ,B , as it enters and leaves
0

- dv, - rddrd ; this is (a); besides this,

it also draws out the setup of the forces

exerted on the six faces along r8 ; this

5.9 _15 r m I* is (b). If one is considering the case of

Fig 15.9 axisymmetrical flow fields, then, along-- , that is

1. Rate of Deformation of Related P6 the direction that ,

Angles

to say, P(uv)P(YT) , (wv)-OU re.are
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all invariable along the circumference, ,V . Because of this fact, when one is

considering the case of rotational flow fields, if there is a tangential velocity,

v, then, at the same time, there is a radial velocity, u; due to this fact, perpen-

dicular to the radius, r, there is produced a Ke Shi acceleration, uv/r, and there

is a Ke Shi force (puy/ r)[N/m']. In Fig 15.10(b), dVs has two end surfaces on

which there are turbulence flow shear forces, ra.. Because of the fact that, in

a case in which dVs is in a condition of equilibrium, if one takes a given edge

as the axis and solves for the total moment of force, it should be equal to zero.

Due to this fact, Te mfb. The shear or tangential forces, 'v which is

exerted against the two end faces of dVs have a component of force along the

direction F6 which is

2.2

The rate of change of momentum is equal to the total surface force, that is,

-5;7 (puv)dV, + dV, + pvJ>
+a,. -, O red, d

+ LIM dV, + it- rdddz,

If we eliminate dVs, then, we can obtain

S(pw).v + [- (pu)V + +_! +pL

OC + + 2 (1537)

If we solve for the differential on the basis of the two function product, (Fw)v;

then, if we take equation (15.37) and expand the left and right side of it, we

can get oW) 1 a. • L -+-, (rp") +10 .T+- 2_
+ P 'V.!~f

V Or.

According to the continuity equation (15.30), the quantity in the square parentheses

in the first quantity on the left side of equation (15.38) - 0. If we take the

right side of equation (15.38) and make a differential expansion, we then obtain

the last two quantities on the right side of equation (15.37), that is,
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rar , r

S (a) RI.{t$

.. (.)

, Fig 15.1I0

Force Equilibrium of dVs, Circumferential Direction r0 2. Rate of Change of

~Momentum 3. Surface Forces

~The equation of circumferential momentum is

b-b

P u+ +) . I A. (,r p).
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Sec 8 Turbulence Stress Tensors and Deformation Rate Tensors

The six faces of the fan-shaped, differentiated control body, dVs, has exerted

against it normal turbulence flow stresses from three directions, that is,.1.,,G.

and g-- ; these faces also have exerted against them turbulence flow shear

forces from six directions; these are rV., v#; , Because of these

facts, when one is dealing with a situation in which there is stable equilibrium,

the turbulence flow shear forces exerted against neighboring sets of faces of dVs

are equal to each other in the appropriate pairs, that is to say, r0-T*,

Co.--- .,& .--o, . It follows from this that, if we speak in terms of numerical

quantities, then, there are only six types of different turbulence flow shear

forces. On each plane of the three coordinate planes in a cylindrical coordinate

system, there are three shear forces exerted, and it is possible to combine these

into one vector. Three shear force vectors combine to form a "shear force tensor"

II; we can make a comparison between the matrix form and the mean products of the

pulsation values by writing out the following:

f- as. -.. YU, - 7 ' -Z3

(15.40)

The matrix is set out in a framework which presents, in a reasonable order, the

array of numbers involved. When the number of items in the horizontal and vertical

rows of the matrix are equal, then, the matrix is called a "square matrix." When

one is dealing with a case in which the top right and lower left positions on each

diagonal have corresponding values which are equal, as is found in the square

matrix II of turbulence flow shear forces from equation (15.40), i.e.,

r--r#,,re,--r.0,r.- r,; then, this is called a "symmetrical square matrix." If we

were to take the rows and columns of the matrix of equation (15.40) and exchange

them with each other, this would be called a "transposition matrix." The values

in a "transposition matrix" are still equal to the original values of the

"1symmetrical matrix.

Fig 15.11 represents the set up of the distribution of the rate of linear

deformation and the rate of angular deformation which are caused by the normal and

shear or tangential forces of turbulence flow,VT and r7 , which are exerted on

the three cross sections of the differentiated control body, dVs . According
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((r, dd. dD

ot + Saw

-I ft 0 .

In
(C' ~ld s

15 .11I

Fig 15.11

1. Distribution of Rate of Deformation of the Three Cross Sections of dVs 2. Cross

Section

to equation (15.16), the normal shear force of turbulence flow, ai, a the turbu-

lence flow viscosity, ft , x the rate of linear deformation along the normal line

direction; moreover, the shear force of turbulence flow, I' , = the turbulence

flow viscosity, PT , x the rate of angular deformation of the edge. The linear

deformation or strain, t the distance of lengthening or shortening which

results from the pull or pressure exerted along a certain selected section is

eliminated by the length of the original line segment; the rate of linear deformatior

is 4DE= the amount of the increase (or reduction in flow speed along the given

line segment/the length of the given line segment. For example (see Chapter 5,

Sec 2), the rate of linear deformation along r =_ _ __ and the
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turbulence flow normal force a,-2pr?( ),the rate of linear deformation along

. (r + r)dO td8 - ; the turbulence
riB' k * .,j, i r _

flow normal stress ow. ;" the rate of linear deformation along z

and the turbulence flow normal stress M2 !t I  Because

of these facts, if one is considering the case of an axisymmetric flow field, then,

the edge jg has no rate of angular deformation, that is to say,

-. . . "-0;

It follows from this that u, v, and w are invariable along the circumferential

direction r . Because o.f this fact, the rate of deformation of related angles

within the cross section rd~dr IL - ; the turbulence flow shear force
8r-r

- - r+) ; the rate of deformation of related angles within the cross5,
section rd~dz = a / z; the turbulence f low shear f orce ru-re.* -z 1.2

the rate of deformation of related angles within the cross section drdz !t- +

Or 6z

and, the turbulence flow shear 
force r . r P -O +

The turbulence flow force matrix II is a symmetrical square matrix. If we

make a connection between it and equation (15.41) and equation (15.42), then, it

is possible to form them into the matrix equations which follow

rot r "
.O Or r 1
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2,: ,v o o

4 - -1 " "

So 0

3 7 , V 0 (1543)

According to the various elements in corresponding positions in the matrices

on the two sides of the equal sign in equation (15.43), it is possible to write out

a turbulence flow force formula for each quantity, for example,

- , P

VM pA /V - - T P -

.3

lC,* -- rar "" -- , e t c

Sec 9 Axially Symmetrical Turbulence Heat Transfer Equations

Equation (15.19) only represents the turbulence flow heat transfer density

flow in the coordinate direction y. On the basis of this, it is possible to write

out the turbulence flow heat transfer density flows for the three coordinate direc-

tions as follows: in the radial direction, r,

q,- - - -" -,-r - [kCl/T.,

... ( 5.,,,)

in the circumferential direction ,-.q O,.this is due to the fact that the field

in question is axisymmetrical. In the axial direction, z, we find7, - I Ek,/m, . ,
q, -pwcT' -- pw 5 L - , " 1 5

(15.45)

Fig 15.12 draws out the changes in the turbulence flow heat transfer density

flow within the meridian plane dV, - ,dOdrds of drna
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Fig. 15.12 Changes in the Turbulence flow

Heat Transfer Density

31 2a



According to the conservation of energy, the rate of change of the flow of heat

into and out of the control body is equal to the rate of change of the heat

transfer density flow (q, + q,2) of the surface of the control body plus the

loss function P (that is to say the rate of the production of heat by surface

friction). According to these basic principles, we can set out the equation

[8(n) dr+ (pUi) J(' + d,)ded,. - (pw~r49dz

d. -+- 5 7 d+Pw5' d~ar - (pwi)rd~dr

q, + 2i49.]r.. 9 + dr)dd + q,rdddz

-q.4- -dz r dd r + q. rdi84r + od V,

OQpu:) +(pw)++
dr r + Z~)z~ ar

- - ~ Ekcal/ml.s] (15.46)

On the basis of the two functions (pi1)i and (Pw)I if we solve for the partial

derivative and then take the left side of equation (15.46) and-expand it, we can

obtain ~.~w
:4O(-l Lal+i 5- + pU-

ar r 9 Or

0, rx dr

The first three quantities on the left side of the equation above can become

r Or a

(See equation 15.30).

P wua -4- W -(9.7

* - - ~(rq,) + *, [ka/'s 15.4 7)

Heat is produced by the pulling and pushing pressure on the normal lines along the
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surface, that is to say, the normal stress multiples the rate of linear deformation

The tangent lines along the surface out across each other and produce heat, which

is to say that the tangential stresses multiply the rate of angulir deformation

The loss function = the overall rate of heat production caused by the rubbing

of friction in turbulence flow as it occurs on the surface of the control body,

that is,

Sec 10 Axially Symmetrical Concentration Diffusion Equations

Let us generalize the use of equation (15.24) in axisymmetrical turbulence

flow fields. If we are considering the density flow of the concentration of

the jth type of gas, then, in the radial direction, r,

'" " ".. - Or"-. i -, *?i.... f...
-- .: 4W AP: MI -7 ' 1.9

in the circumferential direction, r , ()6- , and, because of the fact that F,

is invriable along r , ( 8 1,/r)-.: ; along the axial direction, z,

,(j,) 3  Da_

'-T, kg/m*.s, (15.50)

According to the conservation of mass, the differential between the concentration
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of the jth type of gas as it enters and leaves dVs ought to be equal to the rate of

change of the density flow of concentration on the surface of dVs+ the rate of

formation of the jth type of gas within dVs, Rj. According to this principle, if

we take a look at Fig 15.12, then, it is possible to set out the concentration

diffusion equation for the jth type of gas, that is,

-(--+ (P " ,),](r + dr)d dx - (pwu,)rd d

+ f8~is)dz + (pwm,) Jd6dr - (pwm,)rdtd,

dr+4-)~~ + dr)deds

+ (.,,Od, - [1(2)c d, + (J,). Jrde,

+ (Jj),d0d , + JdV, p +
ar

+ (PWmn,) ___+ ~i.49Z -- Or

- L+R, (1.5)

And, continuing in this vein, if we expand the left side of equation (15.51) on the

basis of the previous solution by using the partial derivative of the products

(pt)m and (pw)mj then, we can obtain

PU + O(PV)] +
r r a. Or

[r(J,),] + R,

According to (15.30), the three quantities in the-equation above

8.
- ik(pu) + 8(Pw)] - ,

Because of this fact, it is also true that

, Or ax as

+1,0k/ms (15.52)
S - (J,),] + R, E/m'., (.31
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In flame tubes, right in the combustion area, it is possible for there to be

n type of gases coexisting at the same time. According to the preceding Sec 6,

it is necessary to symbolize this as

-, " ,+ 2,+. -3 .

Combustion areas are different; the pressure and concentrations of dVs are

different; because of these facts, there are n types of gas concentration diffusions

and n equations with a form similar to that of equation (15.52). Fuel and gases

which have not yet been burned react with substances and and undergo a chemical

reaction to become products of already burned fuel and gases. If we pick the

concentration, cI , of a certain reacting substance to be the basis (for example

CcH4 ), then, the rate of dissolution and reduction of concentration is nothing else

than the rate of the chemical reaction, that is, the rate of the dissolution and

reduction of the amount of CH4 or, in other words,

Or, the rate of the formation of CO2 is

.~- 2 .,. ',)

,- (15.53)

Sec 11 Combustion Reaction Rate W

In the previous section, the rate of loss of reacting substances or the rate

of formation of the products of reaction, R1(kg/m"& , is nothing else than the

rate of combustion reaction, W, which represents the speed of burning. In the

main combustion area, fuel is continuously supplied and vaporized and then mixed

with air to form'unburned fuel and gases or unburned fuel and air mixture."

It is only necessary for the ratio of composition or blending, s, to be appropriate

in the mixture of unburned fuel and air in terms of the content of oxygen con-

centration (cox) and the concentration of fuel (cf), and for the environmental

temperature, T, and pressure, p, to be adequately high, as well as for the flow
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speed, V, to be not too fast, and then, the atoms of oxygen and the molecules of

fuel can violently collide, breaking up the molecular structure of the fuel and

forming into a new molecule with the attendant production of heat in the quantity, Q.

Kerosene is a mixture of several types of compounds of carbon and hydrogen.

This mixture must first be vaporized to form a hydro-carbon compound in a gaseous

state, such as, CH4 , C3H6 , and so on, and, only when it has been reduced to the form

of these types of simple molecules can it be introduced to the combustion. During

combustion, there is also no immediate, one-step reaction to form CO2 and H20.

Individual molecules must first break down to become atoms. The atoms and molecules

must collide with each other to produce a series of transitional products such as

CO, OH, and so on; this chain reaction takes place in stages and, finally, results

in the formation of CO2 and H20. During the process of all this, the stage of the

reaction which happens most slowly determines the overall rate of reaction. If one

is dealing with a case in which there is a rich mixture of fuel and a shortage of

air, then, because of the agitation or liveliness of activity of the oxygen atoms,

they are picked up first in the formation of H20. There is a certain amount of

carbon left over which can only go into the formation of CO. If the shortage of

oxygen is too severe, then, there will be an excess amount of compounds of

hydrogen and oxygen.

(1) The Breakdown of Individual Molecules, Stage One Reaction

Let us assume that JAB- A_+ B . Let us take c to represent the instantaneous

concentration of (AB) (kmol/m3 ); according to the "laws for the behavior of matter",

the rate of reaction and the instantaneous concentration, c, form a ratio; if we

assume that k = the coefficient of reaction, then, the stage one or level one

reaction is
- kc W, [kmo//']s (15.54)

When t = 0, the original molecular concentration of (AB) in moles co, and

ns-m Inc@, then, it follows from these conditions that the function of the

change over time of the molar concentration ratio is

-- -- °,  -, , -- 0.(15.55)

(2) Two Molecules Collide With One Another, Stage Two Reaction

Let us take the parentheses to represent the molecular weight of various
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different types of gases, (A), (B). ............ ; let us also take CA, CB to

*Y represent the instantaneous molar concentration (kmol/m3)! let us further take a,

b ... to represent the appropriate coefficients of distribution or mixing of the

various types of materials or gases in the equations for the reactions; if we

assume all these values, (Q) - the amount of heat generated in the reaction, and the

equation of the reaction is a[4] + 6LB] -f[F] + Z(G] + (Q)(15.56) . The rate of combustion

reaction is

~~IV A  dt-- ... - k€'4 [kmol,"'s] (15. fl

d:

For example: OH+ H--H+HO+ 14.2kc1 (15.55). Equation (15.58) represents the

collision of two molecules with each other and their coefficients of composition

or mixing A- 1, b - 1, (a + b) - 2; because of this fact, this is called a "class two

or level two reaction." k is called the "coefficient of reaction." If the units of

concentration of CA, and CB are different, the, the unit for k is also different.

If H2 and OH have concentrations measured in units expressed in (kmol/m3), then,

the unit used to express the coefficient of reaction, k, is (m3/kmol.s).

(3) If we are dealing with a case in which three molecules or atoms

simultaneously collide with each other and combine to form a new molecule, then,

this is called a "third level or class three reaction." According to the theory of

molecular motion, the chances of this type of collision occuring are very small;

if we are considering the reactions of combustion, then, it is possible to not

consider it at all. In the main combustion area, in the combustion gases, there

are many types present; the chances of collision are very large, and it is

possible to simultaneously have the existence of class one and class two reactions.

Because of this fact, if one looks from the point of view of the results, then, if

one considers the combustion reaction as a whole, the number of occurrences of each

class of reaction may possibly not be a whole number 2 (for example, 1.75,

1.95).

Sec 12 Collision Frequency of Two Molecules

The rate of class two reactions, W2 , is obviously related to the frequency of

collision of the contents of each cm3 during each second as this refers to two

types of molecules, A and B (or atoms, for that matter). The higher is the

frequency of collision, z, the more numerous are the instances of collision during
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each second; of course, the chances of combining are then also higher, and the

combustion is faster.

According to the theory of molecular motion, if, by using the distribution

curve for velocity probability of molecular as it has been developed by Boltzmann

and others, we solve for the root-mean-square of molecular velocity, u-, when the

temperature is T, then,

-RT .T.
-~14500

. '"" (15.59)

If we assume that Ical-4.18 Joule-4.18 X 107 ergs, then, in the equation

universal gas constant R - 1.936[cI/ml.K] -8.314 X 10' [gr/c-el/ol-K] ; T = the absolute

temperature (K); and, M = the molecular weight (gr/mol). U is directly proportional

to -T and inversely proportional to

The volume for each gram of molecular weight is V - 22.4 10 [c/''molJ . When

T, - 273 K, p. 760mmHg , it makes no difference whether the molecules are

large or small, whether they are light or heavy; the number of molecules contained

in 22.4X10'[cm3] is N-.6.023 X I1n Because of this fact, the concentration of

molecules (the number of molecules contained in each cm3) is

p, T 22.4 X 10'

DS 2.68 X ICS [/cmsJ (15.60)

Let us assume that, in a reaction volume, there are two types of molecules,

A and B. The molecular weight of A = MA; the molecular weight of B = MB; the

diameter of A = dA; the diameter of B = dB; the molecular velocity of A = u-A,

and the molecular velocity of B = 7B. The molecular concentrations of A and B are,

respectively, nA and nB, and ,,s+,' . The effective distance of molecular

collisions is
I (d, + d').
2

The velocity of combustion when two molecules collide ise - 0+j. The effective

space of collision for molecules during each second involved --2  . According

to experimentation, 22i (4-5) X 10-[cm],The number of occurrences of collisions

between one molecule A and nB molecules B is z, - x~on. The number of instances of

collision between nA molecules A and nB molecules B is- 9-m -dJOl"tI I/cm'.,$ If we maV

use of equation (15.59), then, the frequency of collision between the two types of
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molecules, A and B, within each cm3 is

? = --nO" ,2l" / L-47 [ D/--'.,1 (15.61)

The effective molecular weight that all this amounts to is

M4 + Ma

The kinetic energy of collision totals up to

, - I M'OA (15.62)
2

Sec 13 Reaction Coefficient k

When two molecules, A and B, collide with each other, it is most certainly

not true that there is a new molecule formed in every case. It is only in cases

in which the velocity of combination, 7, is adequately high, and the kinetic energy

of collision, E', is large enough to make it possible to break up the molecular

structures involved that we find the causation of a chemical reaction; this

happens only when these conditions are met. The energy which is required for the

breaking up of these molecular structures is called the "energy of activation".

Because of this fact, it is only necessary that there be a collision of molecules

such that E' ? E, and there will be an effective combining; this combining will

only take place, however, if this condition is met. Let us assume that Z'AB = the

number of occurrences of effective collisions in each cm3 during each second; if

we assume this, then, the activation factor = ZAB/ZAB = the frequency of effective

collisions/the frequency of theoretical collisions = the coefficient of effective

reaction/the coefficient of theoretical reaction =

e' -C1; (15.63)

From equation (15.63), it is possible to explain why, when the molecules of fuel

are large (this requires that the energy of activation, E, be large) and, during

periods when the temperature is low, that <ks , that is to say that combustion
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is difficult to achieve. If we take the molecular concentrations nA and nB to

represent the rate of combustion reaction, i.e.,

-,,- .,.m_ . - e, * .. . .

.. . ..._ '. , l (15.64)

And, if we further take the molar concentrations (CA) and (cB) (kmol/m3) for

representation, then, due to the fact that each kmol of volume contains, in 22.4

m3, the number of molecules

N- 6.023 X 10,''3OI,
- 6.023 X 103' X 10-[4c; (15.65)

-l - d[tcA== -6.023 X 1Da1~aw UB

- d c .026.02 3 X 0 E
WAt

Because of these facts,

WA dc~l 6.013 X 10'

X -18x )x S-31S ;C109-1t'r~i.1 eilt
- 6.023 X 103 X 4.57

W,- kc[,-,] 2.75

x 10"12 [C (knml/m-s] (15.66)

If we make a comparison with equation (15.66), the coefficient of effective reaction

is

k2.75 X 1o'n'Pe U Z-k~e1 [m'/kmol-s]

(15 67)

It follows from this that the coefficient of effective reaction, k, is a function

of the total molecular weight, M', the effective distance of molecular collision,

d, the energy of activation, E, and the temperature, T.
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We already know the molecular weight MA or the A type gas, and its rate of
loss is -R 4 - M4,W, [kg/m.s] (15.68)

If we first make experimental measurements of the rate of combustion reaction,

WA, the instantaneous concentration (cA and (CB), and the temperature, T, then,

on the basis of equation (15.66), it is possible to calculate the energy of

activation, E, of these combustion reactions, or the coefficient of reaction, k.

If we calculate the coefficients of reaction, k, for different temperatures, T, then,

it is possible on the basis of equation (15.67), to draw out the logarithmic

subordinate straight line, as is seen in Fig 15.13, in order to represent changes in

Ink as it varies with changes in the inverse of the temperature (l/T), that is,

n- () (15.69)

The slope of this straight line should be equal to EIR- -ga ; it then follows from

this that it is possible to estimate the energy of activation, E.

If we experimentally determine the energy of activation of the combustion of

heptane (C7 H1 6 ) and oxygen (02) to be E- 3.6 X 10 [cal,'moll ;then, the coefficient of

reaction is k9 i 4 X 1O3[cm-/gr's] - 4 X 1O'[m./kg-s].

la 4 -

- -
1.2 1.4 1.6 La 2,0

Fig 15.13

1. Ink As It Varies with Changes in (lI/T), (HI)

Sec 14 Combustion Mass Equilibrium

It is possible to uskC 8Hl6 for the formula of a stable molecule of kerosene.
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The components of the weight include Carbon, Ca0.856, hydrogen, H a 0.144 and in

the appropriate gas combination ratio with air, Lo = 14.7. The combustion

characteristics of octane are very close to those of kerosene; when one does

quantitative tests, one always uses octane (C8H1 8 ) to take the place of kerosene.
One may consider that each mole of air contains oxygen 0.21 and 0.79 of nitrogen
and that each mole of oxygen will combine itself with 3.76 moles of nitrogen. The

equation for combustion reactions in which the coefficient of excess air, a = 1, is

C'H, 4- 12+ i. C'16-: 2.5 -X 3:7 6N*'-;- 6 CO
+ 9H3 0:+ 47N, + - (5.7)

The molecular weights areC- 12, H-1, O--W, N--liThe molecular weights are

,- 32, N,- 28, CO, - 44, HO)0 18.
-,H,, 8 X 12 + 18-114, 12.5 0,- 12.5 x 32-400,

47N, - 47 X 28 - 1316, 8CO,-- 8 X 44 - 352, 9HO-

9 A 18 = 16.%

114kg (octane) + 400kg (oxygen) 1316kg (nitrogen) - 352kg (carbon dioxide) +

162kg (water vapor) + 1316kg (nitrogen) + (I14x10400) kcal. The masses of the

mixtures of unburned gases and gases which have already been burned are equal, that

is 1830kg (unburned gas mixture) - 1830kg (gas mixture which has already been

burned) + 1.186x10 6 kcal. From the equation for the combustion reaction, (15.70),

is possible to calculate that the appropriate ratio of gases is

400 + 1316 1716 - 15, [kg air/kg octaneI14 14!

that the appropriate ratio of fuel to oxygen is

S.-o - 3.51, [kg air/kg octane114

and that each mole of gases that have already been burned comes out to have carbon

dioxide in it so that
SM

8 + 47

If we take samples from the gases and perform quantitative analysis on them,

and if one finds that, in the gases which have already been burned, CO< 14.54%.

then, this explains the incompleteness of the combustion, -(.--)<1o
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Equation (15.70) is an equation which describes a case in which one assumes

that the time of combustion is adequately long, that the space is adequately large,

that the environmental or ambient temperature of combustion and the pressure in

the combustion are invariable, and that the supply of fuel being mixed with the

air is maintained at the appropriate ratio, Lo, and does not vary, and this equation

also assumes that there is ideally even mixing in an ideally stable and continuous

combustion reaction. In actuality, the volume of the main combustion area, V, is

limited, the stop-over time of the mixed gases, a,.: will not be very long,

because of the presence of counter-current flow diffusion mixing cannot be one-
hundred-percent even, and the distributions of temperature and pressure are not

set up evenly; it follows from all of this that, even if there is an appropriate

mixture of ingredients, there will still be a great deal of left over oxygen, and

the fuel may also not necessarily be completely consumed. Because of the fact

that the chemical reactiveness of hydrogen atoms is strong, if there is first

a sudden influx of oxygen into the composition of the mixture and 0>1 , and

combustion takes place when the fuel mixture is lean, then, there will again be, in

the gases that have already been burned, an appearance of carbon monoxide (CO).

when a <i , and combustion takes place when the fuel mixture is rich, then, one can

get the appearance of unburned fuel, but this only happens under these conditions

and no others; this unburned fuel is (cf).

Whether one considers the situation before combustion or after combustion,

the numbers of the same types of atoms should be equal. For example, concerning

equation (15.70), in the unburned gases, there are 12.5x2 = 25 atoms of oxygen,

and, in the gases that have already been burned, there are 8x2+9 = 25 atoms of

oxygen.

If we take the oxygen to be the index or reference coordinate, and then

take the amount of oxygen in the mixture during perfect combustion as the base

value or standard, then, when there is a lean mixture or a rich mixture, in the

mixture of gases, the corresponding ratio between fuel and air is * . !
Let us assume that p = the appropriate or optimum amount of oxygen to be mixed

in / the actual oxygen content C.1, and let us also assume that a lean mixture is
a>], or- $<1, - let us further assume that a rich mixture is a<1,

or >I, 1-, (15.71)
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The instantaneous localized combustion efficiency is I = the actual amount of

oxygen lost/the appropriate or optimum amount of oxygen in the combination - I -

the concentration of oxygen which has not been dissipated or. lost/the concentration

of oxygen which is appropriate or optimum to enter into the combustion - 1 - r/ro

(15.72). Let us assume that T - the actual temperature of gases that have already

been burned, that To = the original temperature of the gases that have not already

been burned, and that Tm = the maximum temperature of gases that have already been

burned if the combustion is ideally complete 0 = 0. If we assume that 4 =

r/ro = the oxygen consumption ratio, then, the instantaneous local combustion

efficiency is

If we are considering the case of a lean mixture, 0>.1. then, due to the fact

that the mixing is uneven, and the time is inadequate, the combustion reaction for

i<. is

4,+ 3CL-)co + (25, 17)co
"." 9H,64- 4: , : ,:_0 _,. (15-s74.)

On the basis of the fact that, in the gases that have already been burned and

in the gases that have not already been burned, the numbers of atoms of the same

types are equal, if one checks out the number of moles of C02 , x, then,

25a- 25(a - ,) + 25(1 - ) + Zz + 9,
- 25a - 5217 + 25 - 251 + 2: + 9,

SO--50n + 34 + 2x;

It follows from this that,

x - (3oV - 34)- (2517 - 17).

If one is considering a case in which r < 1, then, it must be that X <8, and

that there is imperfect combustion with a lean mixture; it follows from this
that there would be evidence of the appearance of CO. From equation (15.74), it

is possible to calculate, in the gases that have already been burned, the molar
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concentration ratio for the CO and excess 02 contained in them; this ratio is r.

The total number of moles in the gases which have already been burned

12.5a - 12.5y + 25

-257 + 257 - 17 + 9 + 47a.= 59.5a

- 12.517 + 17 - 12.5(4.76a - 71 + 1.36),

The molar concentration ratio is

25( -
"12 5(4.76a - , 4- 1.36)

Z( -77)
(4.76a - v7 + 1.36)'

ro, 12l.5(a - r) 1-5

12.5(4.76a - 17 + 1.36)

(a - 17)
- (4.76a - 7 + 1.36).

We already know a and 1) for the main combustion chamber; on the basis of the

equation (15.75), it is possible to calculate the molar concentration for the

excess oxygen, r0 2 . If one is calculating the actual excess oxygen coefficient

a. , for an augmenter combustion chamber, then, one ought to use this

concentration of excess oxygen.

Sec 15 Overall Reaction Rate of Octane and Experimentation

The combustion of complicated compounds of hydrogen and oxygen like octane

(C8H18 ) and kerosene are reactions that proceed in several stages. If we first

fix the overall class of reaction, m, and the class of the fuel reaction, n, then,

we can, on the basis of equation (15.57) and assuming that (cf) = the molar

concentration of the fuel, and that (ccx) = the molar concentration of oxygen,

write out the consumption rate of oxygen (that is the reaction rate) which is

If we assume that the molar concentration of the mixture [c.][moil

then, o T. On the basis of equation (15.75), let us use the molar
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concentration ratioro,']L= L,. ,i.J I the coefficient of reaction, k, accordit

to equation (15.67), can be written as

k-k -r4.° ,F .

It follows from this that the rate of oxygen reaction is

T
=ee -- kM r ( Lmal/i. -S

" (15.75a)

Let us assume that V = the volume of the combustion chamber (1), that Go = the

gas supply circulation (mol/s), and that Gox = the rate of consumption of oxygen

(mol/s); in such a case, [mo/s, ,j - rGO. m - 1.8-2.0, n- 0.8-* 1. G.,- 021 1G,7-

in a lean mixture ,=- , and a rich mixture means j- 1; in a lean mixture,
-a

the gas supply circulation is

Go4.6; 1'7
, \RT'

x 120 - )N.(M -0.8
(4.7607 - + 1.36)- ' 1.81 a,0.8

In a lean mixture where a> 1 , the circulation load is

- G , 4.76ak + a -.

V (p" R

X~ 2(4.76a.- i + L-30),-- (15,76)

In a rich mixture, the gas supply circulation is

Go - 4.67 V A, (~L T aw( A)

1(4.76 - 71)a + 0.08(1 + 16.j)

In a rich mixture, where a< 1, the gas flow or circulation load is
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Fig 15.14

Circutation or Gas Flow Load ,- ' L ] 2. Corresponding Fuel-to-Air

Ratios (1/ a ) or *, 3. Formula 4. So~id Lir 5. Experimental Tests

6. Lean Mixture of Fuel 7. Rich Mixture of Fuel

0.3 0.4 . 0.5 0.6 O .7 . 0.9 .0~ .1I ',2

-- "'--- 7--.300 91178T$13601t533/169 155 200' 2145l'0S3 I5

0.9 . , 400 1I07 126 4L401166171T3 93 2:0792215l21 2¢',05

500 115b13 15719tSO 31520119 12

5000K

Fi gl 1 5 .4e -t - i

1. The Instananeous Local Combustion 
Temperature, T, As a Function 

of and

6 (Fuel C8H18 )

32B

' 103 0 4 0 5 ...0 .~ .1 .
,il +- , li,,. ++

+ -.+- 300 1 ..... . .. .. . .517, 1899207.-2225 ,--12,-85w22--



Let us assume that the original temperature of the gases which have not yet been

burned is T, - 400[KI, p - 0.2 - 1.0[aenl, E- 4.2 X 10[ca/nol], R - 1.996[cal/tmol.K],

let us further assume that, if we are dealing with a lean mixture, when a 1,

then,k,--., / - 1.67 × low and, if we are dealing with a rich mixture, when c < 1,

then,4.--./ ' II.I X lo" On the basis of the data which have been postulated above,

if we substitute into equations (15.76) and (15.77), then, we can figure out the

curve which represents the changes of air current load, 1, for the combustion of

octane and oxygen as it varies with corresponding changes in the fuel-to-air ratio,

1/ a ; this curve is represented by the broken line in Fig 15.14. If one grants the

basic assumptions of a sherical, ventilated combustion chamber in which the

temperature is maintained and the mixing is even, then, the results of experimenta-

tion with the combustion of octane and air are represented by the solid line in

Fig 15.14. If one arranges to increase the air current load, 9., that is to say,

if one arranges to increase the air supply to the combustion chamber, then, one

will also succeed in increasing the speed of the rate of oxygen consumption. Sooner

or later, because of the fact that, within the combustion chamber, the stop-over

time, r,, is too short, the flame will be blown out.

Sec 16 Combustion Heat Balance

From Table 15.3 it is possible to find out the fact that, for perfect combustion,

w = I, as well as the ideal maximum temperatures, Tm, for different original

temperatures, To, and different corresponding fuel-to-air ratios, % ; besides this

it is also possible to find out the temperatures, T, to which the gases which have

already been burned can attain assuming that we already know 0 and we are consider-

ing different values of To and different rates of combustion, 'j . Fig 15.15 (a)

represents the main combustion area in the midst of stable continuous combustion.

Let us assume that the coefficient of excess oxygen, a = 1, and that the combustion

reaction generates the following amount of heat for each mole of oxygen, that is,

1. 186 x 10' kca/mol 1,14 12.5

If we assume these things, then, the rate of the release of heat for the main

combustion area is!, - HG.. - HI'W°, - 0.21rGag [kcal/s (1573 ). V - the volume of the

*main combustion area (m3 or 1); Wox = the rate of reaction of oxygen (equation

15.75 a). The amount of heat which comes along with the gases which have already
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Fig 15.15

1. Main Combustion Area 2. Combustion Heat Equilibrium

been burned as they come out of the main area of combustion =the heat output rate,

which is,

Let us consider that the main area of combustion has absolutely even mixing, and let

us not take into consideration the problem of the dissipation of heat by the walls

of the flame tubes. If we take the mole to be the unit, then, L,--12.5+ 4 7 -- 9 5 .

When there is thermal equilibrium, then, QI = 2;it follows from this thatI

--

(a)J

The left side of the equation above is the curve ABEFCD in Fig 15.15 (b) the right

. side is AE, AB and other such straight lines. Point A represents the lowI

f temperature point at which ignition has just taken place; point B represents the end $
Sof the period of pre-combustion, and BF is the period of stable combustion. Point

beC represents the a region of the maximum temperature of combustion, Tm, with ant I

Sattendant rapid reduction and slowing in the rate of reaction, Wo. If the gas or

eair supply, G, is very small (the straight line AD), then, it is only possible to

have combustion when one has temperature TD; no other condition will do. If one
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increases Go, then, the straight line and the curve will cross at point E, and

there will be blow out; if one increases T;, then, there will be stability
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Chapter 16 An Outline of the Computation of Combustion Flow Fields

Sec I Standardization of Combustion Flow Fields

If one is going to consider the case in which he is going to make theoretical

calculations and analyses of combustion flow fields, then, he ought to consider all

the physical and chemical processes. For example, concerning turbulence flow

strength, E , and scale, 1, are vortices attenuated, weakened and broken up? Is

turbulence flow homogeneous in various different directions? If one is considering

the case of the kinetic frequency spectra of turbulence flow, then, what about the

idea of mapping out a "turbulence flow model" or "normal turbulence flow?"

Are thcme or are there not areas of vortical counter-current flow? What is

the influence of the counter- current flow on the size of the scale involved? What

is the voricity number S equal to? And what about the location of the vaporized

fuel jet, the angle of dispersion of the vapor, the rules governing the distribution

of the fuel droplets, and the speed or slowness of the rate of evaporation?

What about the distribution of the fuel-to-air ratio (concentration), and the speed

or slowness of the turbulence flow diffusion mixing? What about the length or

shortness of the stop-over time of the gas mixture in the combustion area, IS , the

diffusion time, To , and the reaction time, r& ? The rate of disappearance or forma-

tion of different types of gases, Rj = the rate of the combustion reaction, W; what

about the mechanisms of reaction in the various steps of combustion, the overall

class of the reaction and the presence or absence of thermal decomposition? What

about the scope and speed or slowness of heat flow diffusion and radiant transfer

of heat? What about the geometrical dimensions of the form of the combustion

chamber, its boundary conditions and its operationl configurations? And what about

the initial conditions which still must be known if one is considering non-stable

flow fields?

If one were to consider all of the ten conditions discussed above with their

* influences on each other, then, the set of differential equations for a turbulence

flow diffusion three-dimensional combustion flow field would be very difficult to

solve. It follows from this that one should first, before setting out the equations,

look toward the operational configurations of actual combustion chambers and draw up

a set of standardized or normalized methods of numerical solution which are simple

and can be used on physical and chemical problems.
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Sec 2 Turbulence Types

If we are considering the problem of figuring the average time velocity, V, of

a rotational jet combustion flow field as well as its concentration, cj (or mt), its

distribution of temperature, T, and its thermal flow, q, through the interior walls,

then, it is necessary to know the turbulence diffusion (transfer) coefficients of

momentum, heat, and mass, , r. & r, . These coefficients should represent the

functions of the localized parameters of gas flow for density, flow speed and

temperature. It is only when empirical measurements and theoretical analysis combine

that it is possible to precisely determine the "effective viscosity of turbulence

flow", L . By the use of a hot-wire wind speed meter or a laser scan of the flow

field, it is possible to make a precise determination of the distribution of the

turbulence flow strength, e If we make a precise determination of the frequency

spectrum of density flow momentum, then, it is possible to determine the distribu-

tion of the turbulence flow scale or dimension, 1; it also becomes possible to

determine a calculated value for the coefficient of turbulence flow diffusion, DT.

If we are considering a case in which the vortical strength number S ; 0.6, in a

rotational jet, then, due to eddy induction (see Chapter 6), the strong pressure gra-

dient + Op/'Oz, + ap/Or ,which is produced in the parallel flow direction and in the

radial direction goes to form areas of counter-current flow and areas of reflux

flow. If we are dealing with a case in which the turbulence flow strength E 50%,

then, the turbulence flow shear stress or force, rr , is quite large. If we can

arrange for the diffusion mixing to be violent and fast, then, it is possible to

raise the strength of the heat produced as well as the efficiency of combustion;

it is also possible to shorten the flame and raise the level of stability of the

combustion. One might even be able to say that the ease or hardness of ignition,

the speed or slowness of flame propagation as well as the stability of combustion

are all dependent on the diffusion coefficients of momentum, heat and mass,

srFh & F, The influence of the speed or slowness of the mixing on the jet

nozzle vaporization and the "diffusion flame" of the combustion of fuel evaporation

is even greater than that of the evaporation-tube-type "pre-mix flame." If we

are considering the case in which we are doing measurements of the distributions of

the flow speed and turbulence flow strength of the flow fields in cold air testing,

then, it is possible to extrapolate the distributions of concentration and tempera-

ture of the "diffusion flame."

(1) When the vortical strength number S < 0.6, counter-current flow is exremely
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weak. Let us assume theat the root-mean-square of the turbulence flow speed is

homogeneous in different directions, so that, C--0-- ; if we assume this,

then, because of the fact that there is a similarity between the diffusion

phenomena for momentum, heat and mass, and, consequently, between p, r, ri , it is

possible to presume that these quantities are also homogeneous in different

directions. Let us make use of the concept of the "prandtl" mixing distance, 1,

and use a set of cylindrical coordinates in r, e and z, as well as the component

vectors of velocity, U, V and W. Let us first assume that we are dealing with a

non-rotational turbulence flow field, then, according to equation (15.8), the

root-mean-square of the pulsation flow speed is

Or(A(-r-)

From equation (15.42), we can consider it to be true that, within the rz meridian

plane, the gradients of the shear force velocities along r and z are equal,

that is to say i2:_a au ; in such a case, the turbulence flow shear or
&r Os

tangential force is ,. -- --puaw' - - • O(1.2). If we compare

equations (16.1) and (16.2), then,

2P"JT( - -r % 2
It follows from this that

The kinetic energy- of turbulence flow is E--pWj [N.m/rol], or
P I , [u/], - --. ; P.2 M, - (16.4).The stronger the pulsation is, the largerP 2 P '. 2._,

is the viscosity of turbulence flow: A' i* -P .P w -- L [Imlsz] (16.5)
4 7 4"

In a rotational turbulence flow field, each unit of mass has exerted on it the

centrifugal force2""P-., .Nl/aJ (16.7. If we assume that the micro-masses of a gas

diffuse through the mixing distance, 1, then, the mechanical energy produced and

exerted against the micro-masses of that gas in the flow field - (the centriPugal

force x the mixing distance) divided by the mass density, that is to say,
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-- "r

-_. (16.s)

Within the r8 cross section, if we assume that axisymmetrical flow only takes into

consideration the absolute rate of angular deformation k5') , then, from

equation (15.42), we can say that the turbulence flow shear or tangential force is

- - -= - ) (16.9)

And, according to equation (16.3),

It follows from this that,
VTr -13 / (1v). 6-10)

Concerning rotation, ' (P- - r

-- 21c .z(-- ')_-2r: a(0V) (16.11)
Pr 1 60? O

Fig 16.1 represents a flow field in which a vortex is being deformed as it

weakens and is breaking up (consult Sec 7 of Chapter 6). Let us assume that, on

the circumference described by a radius, r, there is diffusion movement toward the

outside in the case of the gas mass (Di and toward the inside in the case of gas

mass ). If one is dealing with the same circumference, the operating forces,

F1 and F2 , which are exerted on the two rotating masses of gas in their opposite

inward and outward movements should, respectively, form a direct proportion with

the differential of centrifugal forces, that is,

F - C, F C(16.1:)

If we assume that the two proportional constants of equation (16.12) are the same,

so that, C,- C3 -C , then, the corresponding velocities of the two masses
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the radial direction root-mean-square of pulsation velocity, (U, UJ- ,the

radial distances after diffusion for the two masses of gas are(v2-r )- -r)and

the radial direction turbulence flow kinetic energy is

I-- g .rnpu, - l 'F - l(F, - F2)
2

r

r 4,

Fig 16.1

1. An Illustration of a Flow Field in Which a Vortex is Decreasing in Strength

From the equation above, it is possible for us to obtain the radial direction root-

mean-square of the velocity of pulsation, that is,

gm ten 8 v; (16.13)' ~~~Pr .,p .r O..ir-..

Equation (16.13) confirms the last quantity of equation (16.11). If we are
considering the overall influence which turbulence flow and rotation have on

kinetic viscosity, from equations (16.5) and (16.11), we know that the turbulence
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flow 492 + the rotation 2

T Tc

.k /.,..pr .,. .r

' (16.14)Vr F,- awt ;. .,- -o

(A, 2, A(, _

If the average radius of a ring-shaped jet nozzle L, and the mixing distance

l. kr , then,

AW,+ .ktAP)Jk a constant
*,

5  Pr

(16.15)

LLp( -(Al) + (16.16)

The larger is the Reynolds number, Re = L , which represents the

turbulence flow viscosity, the stronger is the turbulence flow; the smaller is

the screw pitch ratio,N W which represents the strength or weakness

characteristic of a vortex, the stronger will be the rotation; and, the larger is

the vortical strength number ScC LA(pr/) which represents the strength or

weakness of a vortex, the stronger the vortex will be.

Let us assume that

1 4=
N ,'( AW)'

In such a case,

It is necessary, on the basis of the shape and dimensions of the combustion chamber

as well as the experimental conditions, to determine values for the constants, K,

and K2 in the equation above.

If we are dealing with a cold air rotational free jet, then,
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Re' - 0.00294 1 + -j (96.15)

If we are dealing with a combustion rotational jet flame, them,

0.0078 -1 t

In the equation above, the density ratio the lowest density in the center

of a rotational flame jet/the density of the environment around the rotational

jet flame 1; we already know Re, so we can calculate pr .

(2) If we are dealing with a case in which the vortical strength number S >

0.6, then, it is obvious that, as far as counter-current flow is concerned, it is

not possible to assume that the turbulence flow is homogeneous in different

directions, and, it would also be true in such a case that the turbulence flow;

density, ft, would be different in different directions. Let us continue to use

a cylindrical coordinate system in r, e, and z as well as the component vectors of

flow speed, U, V and W. Let us assume that we have already determined by experiment-

ation values for the mixing distance, 1, or the scale involved with the turbulence

flow (see Sec 2 of Chapter 15). In such a case, it would follow that, within the

meridian plane rz, the total or overall viscosity A4- = the viscosity of the

turbulence flow PT + the viscosity of laminar flow V , that is,

+ ap(w + \ +

2 r 2 Or (r 2 Oz/J

(16.20)

The total oreerall viscosity on the horizontal cross section 7e is O

where a- is a constant > 1; it follows from this that 14@< p.,. In the equation

above, the constant a,-1+55j, and S = the vortical strength number which is

t 0.6 (see Sec 11 of Chapter 6).

If we are dealing with a case in which there are no experimentally determined

values, then, it is possible, on the basis of the empirical formula presented

below, to calculate the mixing distance, 1. Let us assume that the radius between

the center line of the flame or the center line of the ring-shaped cavity and the

main axis line of the combustion chamber is ro; if we assume this, then, the mixing
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distance, 1, varies symmetrically with respect to this ro center line. On the line,

ro, the axial flow speed, Wm, is the largest; on other lines such that r % to,

the axial flow speed . - 0.05W.. is the boundary of a ring-shaped rotational

jet. If we already know the distribution of W along r, then, it is possible to

determine the ratio of radii (r/ro) for the boundary of the jet.

/ I (L F, -O.OW., I - 0.01(1 + 0.6S) ()6.21)

(3) A rough calculation of ^7 •

If we are dealing with a case in which we already know the viscosity of

laminar flow, is , as well as the root-mean-square of the speed of pulsation, u,

and we accurately calculate the Reynolds number Re for a vortical flame, then,

it is possible, on the basis of Sec 4 of Chapter 15, to calculate 10@-'Rps. If

we already possessthe frequency spectrum analysis of the turbulence flow field and

we obtain the root-mean-square of the speed of pulsation, w, as well as the scale

or magnitude, 1, involved with the central turbulence flow, then, on the basis of

equation (15.7), it is possible to calculate the coefficient of diffusion of the

turbulence flow DT--W ; from Table 15.2, if we borrow the analogous standard

"Prandtl" number Pr for laminar flow as well as the "Schmitt" number Sc, then,

it is possible to calculate the following (see equations (15.22) and (15.25)): the

turbulence flow viscosity is - prT= Sc .pDr - Se 1,,or i.' -Pr ,par- Pr .r (16.22)

Because of this fact, it is possible to determine precise values for all the

quantities u.,F,a T,, which determine the scale and the level of the dfffusion of

turbulence flow. In Chapter 15, pT, in equation (15.41) to (15.42) Tr, in

equations (15.44) to (15.45), and r, in equations (15.49) to (15.50) all have

precisely determinable numerical values, and these can be used in making prepara-

tions for doing difference calculations. If we use the vector differentiation

symbol v , then, the degree of divergence of turbulence flow forces = V.11

(see equation (15.43)). The degree of divergence of the heat flow is

-V'q -V!r.VI), and the degree of divergence of the concentration is - . I,
Io '3)

Sec 3 Standard Types of Fuel Vapor Atomization

Different types or shapes of jet nozzles spray out vaporized fuel from different

I!
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positions; the size of the value of 4' for the jet aperture, the fuel pressure P

and the angle of spread or divergence, , , of the vapor jet all go together to

determine the vaporized mass. The amount of jet fuel G.[kg, s] or Q, [n/s]

is composed of fuel droplets of various diameters, ai, which distribute themselves

in terms of size in accordance with a probability distribution. The accelerating

or decelerating movements of the droplets of fuel, the elimination of heat through

evaporization or the release of heat by combustion all have very large influences

on the capabilities of a combustion chamber. A yellow-colored flame represents

diffusion combustion in the wakes of fuel droplets. Blue-colored flames represent

gaseous combustion of evaporated vapors which have already left the fuel droplets.

The concentration of oxygen contained in the gases surrounding the fuel droplets,

c..- (p,.'p) as well as the corresponding velocity, Vr, of the fuel droplets to the

gas flow determine the color of the flames. When one is dealing with a situation

in which the diffusion mixing in the main combustion area is violent, the amount

of reflux flow of high temperature gases which have already been burned is large,

the concentration of oxygen contained, cox, is dilute, and the corresponding

velocity, Vr, is very high, then, because of these factors, one sees the appearance

of- the phenomenon of blue flames which are due to the combustion of "pre-mix gases",

and this represents combustion which is especially rapid.

If one makes large-scale tests of jet fuel vaporization, and one measures the

jet fuel pressure PtNcm2], the amount of jet fuel QfjCC/,] or G#--pjtr/s]

as well as the percentage, Yi%, of an amount of jet fuel which is occupied by

large and small fuel droplets, then, it is possible to draw out the curve for the

probability distribution of fuel droplet vaporization, as is shown in Fig 16.2

and Fig 16.3. If one assumes that = the median diameter (that is to say, the

fuel droplets with diameters which are larger that T and the fuel droplets that

have diameters smaller than i both occupy 50% of the amount of the jet fuel) and

that this represents the degree of fineness of the vaporization, and, if one

further assumes that n = the uniformity or evenness index of vaporization = 1.5

2, then, the integral function of probability, F(a) is

(e) [-P0.693 (16.24

The distribution function of probability is

dF(ja) X
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Fig 16.2

1. The Influence Which Fuel Pressure Has on the Distribution of Fuel Droplet

Diameter, a 2. The Volume of Jet Fuel Occupied by yi%  3. The Amount of Jet

Nozzle Flow 4. Jet Fuel Pressure

0 214 -
I i J - "

.-Ut 15. I X! r-

,,,- 17. 6 k xi,-']. t] 0-1. '&AIL

Cot I./,J 1:0.425. 2.4; Z.. .. ; i:0.73, A.

Fig 16.3

I. The Influence Which the Jet Aperture Has on the Distribution of Fuel Droplet

Diameter, a 2. Fuel Pressure 3. The Gauge of the Jet Aperture 4. Jet Fuel

* , Amount, 5. The Volume of Jet Fuel Occupied by yi%

* The conditions of high fuel pressure and small jet aperture make it possible to

raise the "degree of fineness" of the vaporization of the jet fuel as well as the

* "degree of evenness or uniformity." The traces or trajectories of large and small
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fuel droplets in their various motions are not the same; their corresponding

velocities,V,, are not the same; the resistance to the "brushing clean" effect of

the air flow is different in different cases, and, the speeds of convection heat

transmission, diffusion and evaporization are not the same; for all these reasons,

the sequence or order of combustion can be different. Each fuel droplet, from

the jet to the end of combustion, has its own course of transformation. The

relatively smaller droplets of fuel evaporate quickly, and their combustion is

almost immediate. It follows from this that a group of fuel droplets with an

average diameter of Twould, in the time period, t, after the jet, gradually

increase in size as is shown by the broken line in Fig 16.4. If we use the

instrumentation of the study of optics to observe and measure the order or sequence

of combustion as it is broken down for a group of fuel droplets with a diameter,

ai, then, it is possible to record the probability distribution curves for large

and small fuel droplets at each instant (Fig 16.4). We already know the amount of

jet fuel, Qf which corresponds to the integrated area under the probability curve

for a jet time of t = 0.0. If we solve for the integrated area under the

probability curve corresponding to t = 3.35 (ms), then, this should represent the

volume of fuel droplets which are left after 3.35 (ms) of comhbistion. In still air,

the rate of evaporation for each fuel droplet, Mi, iS

M.- -.. p, . - p, 4,' (!L) [kg/a],

(16.25)

4--~.kn[ + ,AT + '{-H- [kg/sI, (16.26)

pl= fuel density (kg/m 3); ri = the radius (m) of a fuel droplet i; cf = the

specific heat of the fuel (kcal/kg.K); k = the rate of thermal conductivity of the

fuel (kcal/m.s.K); T = the differential of temperatures between the surface of

the fuel droplet and the surroundings (K); c,. - (p,,,/p)the concentration ratio of

* .included oxygen; Hu = the heat value of the fuel (kcal/kg); So - the chemically

appropriate fuel-to-oxygen ratio -0.232 x L,- 0.232 X 4.7 ; and L - the

latent heat of evaporization in the fuel (kcal/kg).

* The momentum or inertia of large fuel droplets is large, and the corresponding

velocities, Vr, are large; if there is forced convection transfer of heat, then,
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the rate of evaporization, Mi, must be multiplied by a correction factor; only if

this is done can one obtain the rate of evaporation, M!, for convection, that is,

M: - 11 + 0.276R Pr*]Jd, k/s/,

Re - Pr--t. (16.z7)
1'7 r,

The number of fuel droplets is extremely large. In order to reduce the number

of differential equations and economize on the amount of measuring to be done and

on the calculation time, let us take the fuel droplets and divide them up into n

groups on the basis of size (for example 5 - 10 groups); let us assume the fact

that, within each of the groups, the diameters of the fuel droplets, a,(i- 1,2,

are all the same; if we do this, then, it is possible to set out n equations.

Let us assume that the concentration ratio of the fuel droplets = the

concentration of fuel droplets of a diameter ai which are contained in each m
3 of

gas mixture/the concentration of each m3 of gas mixture which is equal to

(16.28)

Obviously,

Y 1, fuel/air ratio - a --.t...- (16.29)I IaL, 14.7a

Let us assume that Ri = the weight of fuel droplets of the ith group which appear

in each m3 of the combustion chamber volume every second; we may simply call this

quantity the appearance rate for i fuel droplets; r, = the turbulence flow
diffusion coefficient for the fuel droplets (kg/s.m); on the basis of the gaseous

concentration diffusion equation (15.52), it is possible to obtain a liquid-state

concentration diffusion equation for a quasi-stable state average time turbulence

flow axisymmetrical combustion flow field as it appears below:

_.._ *8,(,., -r+~Li
Ifon nos h (16.30)

If one knows the boundary conditions of the combustion chamber and the appearance

rate for i fuel droplets, Ri, then, it is possible to solve equation (16.30) and

obtain the liquid-state concentration distribution of the combustion flow field.
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Fig 16.4

1. Probability Distributions of Fuel Droplets As They Vary with Changes in Time

2. Passage Through the Jet 3. Volume Occupied by the Jet Fuel yi%

4. Diameter of fuel droplets

This is only possible under these conditions and no others. The gradients of the

parameters for each direction of the normal lines of the solid wall surfaces should

correspond appropriately to the principle of non-permenability, for example RL- 0.
C N

The quantity 0,'. on the center line of a flame tube or ring cavity as well as

of the even parallel flow of the exhaust is very small, 0,/8zZ- 0  At the jet

nozzle, fi = a constant; at the intake, fi = 0. When we solve for Ri, we ought

to consider the fact that, due to evaporation and combustion, the radii of fuel

droplets are quickly shortened. This corresponds to and is appropriate to the

diffusion of the fuel and gases into the gas flow and the simultaneous movement

of the concentration ratio of the fuel droplets, fi, into a lower group, fi-l,

(Fig 16.5).

The range of the distribution of probability for the fuel droplets is

,i "'olt [kg 'm'l

The concentration of the fuel droplets in the ith group is P,- f mdr Ekg'1

Let us assume the fact that the mixture of gases has a density, p, which is

temporarily invariable; if we assume this, then, the rate of change of the

liquid state density, from r > rh through the change to r < rh is
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di 4f dr J1 rajg r i - ~-)[ kg/rn,' .1];

from r rl through the change to r <r is

-L i. k . [kg/m".sJ

* Il
jdi

P

r''

d, ]

I *I;' . I

Fig 16.5

1. An Illustration of the Evaporization, Shortening Up and Exchange Between Groups

of Fuel Droplets 2. The Probability Distribution of Fuel Droplets mi  3. Fuel

Droplet Radius, r

Along the three directions, the diffusion rate for the gases formed by the evapora-

tion of the fuel droplets is

Within the combustion chamber, the rate of appearance of i group fuel droplets

4 for each m 3 of volume each second (or the rate of occurrence of liquid state

concentration) is

R, -. , +

. " [ -' ] (16.31)

If we use a straight line to take the place of the curved section of the
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probability distribution of the fuel droplets, then, as a function of the

shortening up of the fuel droplets, the range of the probability distribution of

the fuel droplets has an average value of Zi which is

- Ph jgml112 , @ - -. r

p44- ,

In such a case, then, ,- i.-r,' 11[kglm] (16.32)
rjl - Ir[,

If we employ equation (16.25) and (16.26) to solve for the rate of shortening up

or shrinking ( then equation (16.31) changes to be

1+ 3

+ [ 4 l~(- --4)(i,-.',j) 11
+ P *1 i =

+ ~ l, J L(rj4, -- -iJ,+ P--

...' ., -" . .. "- (16.33)

Sec 4 Combustion Reaction Types

In combustion chambers, the chemical reactions which take place at the same

time are very numerous. The types of gases which participate in these reactions

are also very numerous. However, if we take an overall view of everything, then,

we can take the view that there are only three types of components into which the

mixture of gases can be divided, that is oxygen, mox, gaseous fuel, mf, and gases

which have already been burned, mb. The concentration ratio of their masses is

Mee Bit M"

moreover, me, + Mt + MA, (16.34)

Let us assume that the reaction time of combustion, r& , is very short, that

is, smaller than I millisecond; let us also assume that the time of mixing diffusion

is rD & 3- 4 milliseconds; if we make these assumptions, then, at a certain single

coordinate in the space of the combustion chamber, there cannot exist both mox and

mf at the same time. Let us assume that we have the chemically appropriate ratio

346

'< 1Ir ,"- : ' >i-' I-



between the masses of oxygen and fuel So  0.232Lo, and that Lo  the appropriate

mixture ratio between air and fuel. When one is dealing with a situation in which

the combustion of a lean mixture is taking place, then, the oxygen left over

-. (mo,- m,5). If one is dealing with a situation in which the combustion of a

rich mixture is taking place, then, the fuel left over-(m, -m.°JS,). If we assume

that the overall class of the reaction is m - 2 and that the class of the fuel

reaction is n - 1, then, on the basis of the rate of the disappearance of

oxygen which is written down as (15.75a) of Chapter 15 the reaction rate of

combustion, which is

O -- -" -, - -W ,=K m,"m " k;m ]Pdm' . W si, T k,'

K0  the reaction constant (16.35)

Sec 5 Basic Equation System for Combustion Flow Fields

Let us take the basic differential equations for the axisymmetrical average-

time turbulence flow gaseous fuel combustion flow fields in Sections 7, 9 and 10 of

Chapter 15 and let us put them together below, as follows:

Continuity Equation +,.
I' A((p)+-L(w kg/rn'.s] (15.30)

8z

Axial Momentum as a- / ):

+ 0 (,r,,) + [N/m'] (15.32)
r Br as

Radial Momentum

: + OU r- r: a,

e 2L - EN/r'] (15.34)
r Or

Circumferential Momentum,
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+1 ( .) [N/r'] (15.39)

Coefficient of Heat Flow

1_ (rq,)+o [kcal•s) (15.47)

Concentration Diffusion

puOr ar O

Or R, [kg/,-' 31 (15.52)

On the basis of Chapter.4 and Chapter 5, it is possible to take the set of

equations from (15.30) to (15.52) and put them together to write the equations in

vector and tensor form. The parameters of average time turbulence flow fields,

such as density, p, and so on, do not vary with changes in time, that is,(8/&t)=O,

and for the axisymmetrical flow fields, (5/,ae)-. Let us assume that 17

represents a turbulence flow stress or force tensor. Let us take the vectors

and tensors and use them to write out the basic set of equations for a flow field

as they appear below:

Continuity equation W ('V) -- (16.36)

Energy equation p(V "')1 - -V " q + - p(VV) (16.37)

Momentum equation o( " V)V - -- p + 1V 1 (16.38)

Concentration Diffusion p(V •V)m,- -V 1, + R, (16.39)

If we take the four equations above, we still are not able to solve for the

pressure field p-p(,,,) ; neither can we solve for the velocity field

V V(,6, ); or the temperature field T--T(r, 0, z) or the concentration field

-- m, (,, 8, z); this is due to the fact that p, 1, Ri, 17, q and 1, are still

not determined with precise values. It follows from this that it is still

necessary to find six more equations, that is,

The status equation p-Rp T, where M ft the average molecular weight of

the mixture of gases. (16.40)

The total enthalpy equation I- C,T + m,H,, where Hu - the heat value of

the fuel (kcal/kg) (16.41).
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The reaction equation-R.. -Kos..m fe, where the reaction constant is Ko (kg/m
3 .s)

(16.42).

The stress or force tensors are

' \lu Ou

- 0, Oa (V)U a I
n -, 7 o

o v &V L w 0 a
as as r az)

- o i 0 0 0

10 0 P 3 0 0 V"

Or17 (vV+VV)-p -Vv)- vV,see equation (5.28) (16.43).
3

The heat flow equation q -'7!, see equation (15.45) (kcal/m2 .s) (16.44).

The concentration density is J,- ,Vu,, see equation (15.49) (kg/m2 .s) (16.45).

After we get values for pTariT and R1 , and we map out the form of the

turbulence flow and the form of the reaction, then, it is possible to set our

sights on the problem of operational configurations and boundary conditions for

actual missions or projects and the consideration of how solve for these.

Sec 6 Proper Logical Order for Calculations of Combustion Flow Fields

(1) What is included in Task Analysis? Choice of structural form, main engine

combustion capability requirements the effects of new technologies and new

materials, capital, labor, equipment, deadlines, and so on.

(2) What is included in theoretical principles? To distinguish from each

other and analyze out the scope of a flow field as well the laws of the conservation

of mass, momentum and energy which pertain to it, the turbulence flow viscosity,

the turbulence flow stresses or forces, the diffusion of heat flow, as well as the

principle governing the diffusion of concentration, one must also deal with the

selection of independent variables, dependent variables and a coordinate system;

all of this is aimed at the simplification of the set of equations involved in

an actual project.

*(3) Dependent variables of transformation. If we are considering the case of

a vortical combus -ion flow field which has a vortical strength number 5b0.6 , then,
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Fig 16.6

1. The Logical Order or Sequence for the Calculation of a Flow Field 2. Task

Analysis 3. Theoretical Principles 4. Set of Partial Differential Equations

5. Form of Turbulence Flow, Form of Reaction, Form of Vaporization, Form of

Radiation 6. Transformation Variable Difference Equations 7. Dimensions of the

Shape, Operational Configurations, Original Parameters, Boundary Conditions,

experimental Data 8. Computational Language Program 9. Machine Entry

Operations 10. Verifying Experimentation 11. New Design Form

due to the fact that counter-current flow is present, changes in pressure as one

goes down the flow have an influence on the upper reaches of the flow. It follows

from this that it is not possible to use the "parallel flow scanning method" and,

on the basis of the numerical values for some nodal points, to deduce the numerical

values for others. In order to overcome this difficulty, it is possible to take

the dependent variables u, w and p from the set of differential equations for an

axisymetrical average time turbulence flow field and change them into the flow

function b and curl or degree of vorticity , (see Sections 8 and 6 of

'a Chapter 4). From the continuity equation in the Section 5 of this chapter,

because of the fact that there is no relationship between r and z, it is possible

to take equation (15.30) and change it into
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Or.- (rpu) - - (,p,'Pw) 1 6.46)

Let us assume that we have an average time flow function 4, to satisfy equation

(16.46); if this is the case, then, it should also be true that

t• Or
r as 7,

2!)- (2L;(16.47)

Let us further assume that the curl or degree of vorticity within the meridian

plane of the flow field is 6- . if this is the case, then theOz Or'"

new variable is (16.48) In order to simplify calculations

let us assume that r., TA and T, in various different directions are all equal

to each other, and let us also assume that the normal stresses or forces produced

by turbulence flow friction, O., 0, Oa- are also all equal to each other. If

we take 4- to represent a certain dependent variable such as #, 1, the excess of

left-over fuel concentration ratio, mf, the total enthalpy I, and so on (Sec 4 of

this chapter), then, the five equations from (15.30 to (15.52) can all be subsumed

under the all-purpose equation set out below, that is,

- b-fd, (., -• (16.49)

The parameters * o.,e. and do in the equation above are all functions, which

are already known, of other independent variables.

For example, if we utilize 0-'-, then, a*,6. - , C ,.--:
if we use ;=- = , then, a- 2 . =,:, u, and

(p,' + WA ~± ).e
- -- jhP
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If we utilize the fuel concentration ratio m#-!4 , then, 8,*- I b,.--tr,",co-
1, do- R,.

If we use the total enthalpy I-4, then d#- T b, - I,1- d- -0/ 427.

Sec 7 Difference Equations and Solution Methods

Equation (16.49) is a second-degree, non-linear, non-homogeneous partial

differential equation with an ellipsoid shape. If there are N dependent variables

4s , then, combustion flow field, it is first necessary to take this type of

differential equation and change it into a difference equation. Take the rz plane

of the flow field and divide it up into several grid nodal points, then, use the

"implicit, full-field relaxation, successive approximation method" to solve for the

numerical values of the nodal points. The flow function 4 and the vorticity or

curl M ought to be solved for simultaneously, and then one should utilize

equations (16.47) and (16.48) to solve for u and w; after this is done, then, it is

possible to use a momentum equation to solve for p. What is known as "full field

relaxation"; that is, in the repeated application of the successive approximation

method, causes the reduction of all the computational remainders (errors) -8 at

each of the nodal points in the flow field. This type of successive approximation

leads directly to the minimization of the errors, e , for each nodal point.

What is known as "implicity," that is, the computation of data for the nodal points

in the lower reaches of the flow, is entirely contained in the equations, and it

is not possible to directly utilize the earlier repeated substitution of values,

and it becomes necessary to solve three or five simultaneous algebraic equations.

If we assume that n is the indicator for the number of times approximations are done

(not an exponent); then, i and j are the indicators for the rows and columns of the

nodal points. Fig 16.7(a) has an implicit unifilar 3 point computational formula

which is

*1g:i,+ a,71 + -8,

+ (other n class quantities) (16.50)

The formula for the five point computation of the stability function full field

method for Fig 16.7(b) is
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1 ..L., + . - .- + ... + ..- s + (other n class quantities) (16.51)

The length of the interval between nodal points in the grid is

AZ , -- , i :2 X. , c2; or rj.o- Ar 2 , ri*~,4 - r..

The implicit full field relaxation method difference equation for equation (16.49)

is

- c,,._, - .i+

C,,o, + - - 0 (16.52)

The non-linear parameters of the equation above are

- Ca1)+ [b] j , C,.+,.rb Oz i

k'1 53)

Sc.. = c.,(3) [ ,.3 ! ,.= -C,()- [ r2,.--t J, c. ....

+ C.,1) ,) (6.54)
rb, 8r

CcI.+ ri. + c.

c,.,,-, C,(3) - PI-O4 I f\ ,.,'

tf .a .;,C- -,, + C" "

- 60 i t 'C od

____ (2n +~ JC.(2)

+ ,b, i~ \O f]O

tb6J r lot C.",.

l- #C,.. I ".( (16.57)

In order to improve the degree of precision or accuracy, we can make particularly

fine divisions in the interval of the grid in those areas close to the boundaries.

f we proceed in this way, then, the length of the intervals I~ r and _1z are not

i-iformly equal. After drawing out a grid network which is not uniformly even in

Suensity with which its divisions are laid out, then, it is possible to make
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all-purpose use of the row and column indicators C,, Ca, C.m-Co (see Fig 16.7b).

If we already know the interval lengthsArt, irAs,, Ai, then

* . Ar Ar.r , .C.( 1)" .r C ',+ , , , ""

C.3 AA?1
- (16.58)

C 4 (1Aj

C,(2) --- (. ,
Art

2

c,,(3) -2 (,.t + A.D)Art

C,O() + Ax
Az,Az

Cn(3) -1(z,+ Azz)
(16.59)

C.,(i) - (Lz, + AZ,)

C,(2) - --- (AZ)
zz,

C.,(3) - (z, + Aza

The procedure for the solution of (16.52) for numerical values is as follows: on

the basis of the materials at hand and the task, first make an initial guess at

the distribution of 4 . Write out the equations for the remaining error s for

each of the nodal points in the entire field. Then, use a "reversing implicit"

computational language to simultaneously solve this entire set of remaining error

equations. If we proceed in this way, then, each time we make an approximation,

the remaining errors, 6 , for the entire field are all reduced one more time.
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At the nodal point, ij, the equation for the remaining error E.., left after

the nth approximation is as follows 4,, - - -

-. - . + + (16.60)
For the limiting case, - -

L *-,,i + ['., ]
,+tf 1".. ]'>:+ + [ .!±,j 1",,-,+ as*.,, L+ p.-i.

+ .- o + (16.61)

If we partially differentiate equation (16.60) against 0 , then we can obrain

the various parameters

• - c.,,- ___.,.,__ _ _.. I I_ .

C~ 1 o4 ~(16.62)I O i . ,- Aa . , .

i-I1  ' * T,
A, Age

2 3

iE 16.7

Fig 16.7

1. Relaxation Procedure 2. Implicit Unifilar Method 3. Implicit Full Field

Method

Because of the fact that the various parameters C!, are all implicit functions,

besides which it is also true that other variables also influence the remaining

error, 6, it follows that we should use 0, to represent the influence on a

of the total of several quantities.

If we once solve the chain formula (16.61) to represent a set of full field

r-'axation equations, then, it is possible to undertake the (n+l)the approximation.

If, when we start, we already know OL, then it is possible, on the basis of the
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algebraic equations of Newton and others for the extraction of roots, to solve

equation (16.61).

The first step is to make an attempt at solving the equation in question; to

do this, first assume , = 0. From equation (16.61), figure out an

intermediate value, *,. From the results of this calculation and on the basis

of the "outward stretch" method, select a value for Ce . We can then use this

value for 'V, in the second step determination of a precise value for the (n+l)th

approximation to the value of 0 ; on the basis of this, we can then figure out

that 'd 4 --U . If we make use of equation (16.52), then, the relaxation

approximation formula in the tentative try at a solution in step one becomes

If, around each nodal point (ij) in a flow field grid network we write an

equation of the form of equation (16.63), then, we obtain a set of linear algebraic

equations. We then solve this set of linear algebraic equations on the basis of

the "alternating or reversing direction implicit" method of solution.

Form solving equation (16.63), we obtain the dependent variable intermediate

value i' after this is done, then on the basis of equations (16.53) to (16.57),

we figure out all the parameters Cij , and use equation (16.52) to figure out the

remaining error sa,,.

On the basis of the data which have already been figured out, we then extend

the process to the nth approximation and the intermediate value (*), and deduce

07, for the (n+l)th approximation.

Let us assume that, when we are figuring the nth approximation, the error e j

or deviation = 0; on the basis of this assumption, we can say that d -; in

this case, from equation (16.52), the remaining error or deviation that we

calculated should be a,,; it follows from this that, from equation (16.60), it is

possible to obtain the relationship ,--.

If we are considering the fact that, from the nth to the *th approximations,

there are two instances of error or deviation, because of the fact that, in the

case of the first step in which we made a tentative attempt at a solution, we

already knew that the remaining error or deviation was a and we also knew

that, in this situation, 0,.'- O, we can utilize the secant method (Fig 16.8), and,

in the second step, select for use a 00 which should be
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Fig 16.8

1. The Secant Extrapolation Method

If we take the intermediate value * between the two approximations, and push them

to the (n+l)th approximation, then, it is possible to take equation (16.63) and

expand it; after this is done, then, if we substitute the value for 0 , which

we obtained, into equation (16.64), we can solve for , , as follows,

- C7.,4.'.j - _.'_. -',,' ,

S" ,,-,.--'2-+ - -- -~ (16.65)

The two-step "implicit function relaxation approximation method" certainly

appears to be a lot of trouble; actually, it is very helpful and effective. For

example, if we assume that all the parameters Cij are unrelated to , , then,

P,*, o;, on the basis of this, we can simply approximate one time, and we can then

obtain an accurate solution. The strong point of this method is that, when one is

carrying out an approximation, the remaining errors or deviations for the whole

field all tend toward zero, and the mutually related non-linear influences can be

represented by 09j

Let us consider the Alternating Direction Implicit computational language, ADI.

Equation (16.63) or (16.65) is the numerical standard or normal equation for the

remaining error or deviation from the ellipsoid partial differential equation for

• a combustion flow field; it can be written in an all-purpose form as follows:

(Let us assume that C,- Cz., + Cro, then, , ( _ -

(16.66)
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The solution of equation (16.66) requires the use of a five-line diagonal

matrix. The ADI method takes the five lines and turns them into a three-line

diagonal matrix, and, finally, uses the "Gaussian block elimination method" to

achieve a solution.

In order to utilize the ADI method, it is first necessary to take the

difference quantities for the horizontal (j not changing) and the vertical (i not

changing) out of equation (16.66) and separate them, that is,

- c ? + c,' - c;.? +P+ 1

-0",~ + C~.4~ a
+ C7++1O,1 ++11 + ra (16.67)

-I - . .- Co.+]J+ p "' - ,-,? -''.ut?-

- C , .#0+ ,,1
1 . 4+h. 1.648)

The p in the two equations above is called the "acceleration approximation

coefficient." Let us assume that m = the numerical value for the first acceleration

coefficient or parameter pi which was used. If we are considering a case in which

the three-line diagonal matrix involved has a maximum value = b and a minimum

value = a, then,

• - • .' -. * . - -,. :.

If we use the equation below to figure out the smallest whole value for m, then, it

is possible to decide how best to use several different values of , that is,

The ADI method utilizes equations (16.67) and (16.68) by switching their

calculations back and forth. If one reaches the point at which the corresponding

errors or deviations for two successive approximations are

then, it is possible to end the calculation.
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Sec 8 Sample Results of Combustion Flow Field Calculations

(1) Flame tube-type combustion flow fields. If we take the flow function 4'

and the curl or vorticity w and use them to replace the flow speeds u and w as

well as the pressure gradient (ap'8,) , then, on the basis of the difference

equations employed in previous sections on axisymmetric flow fields as well as on

the basis of numerical calculations, it is possible to obtain an average time

quasi-stable flow line spectrum for the forward part of a flame tube. We already

know the internal ring and external ring diameters, d and D, of the intake vortical

flow devices, the amount of intake gas flow Go (kg/s) as well as the temperature

To and the pressure po. According to Sec 11 of Chapter 6, the vortical strength

number figures out to be S = 1.57. Large and strong rotational jets, in the

forward part of flame tubes, create radial and axial pressure gradients which cause

the formation of areas of counter-current flow (0/4, = a negative value) as well

as vortical rings. If we take as a basis the facts that the counter-current

boundary line is w = 0, and that ' O, then, along inward-tending and outward-

tending radii, one sees represented flow lines for different amounts of flow

(Fig 16.9',. Accordin2 to equation (16.47)0-i rwdr, 4' is the flcw line which

hugs the inside wall of the outer ring of a vortical flow device.

1 . .4 1.2 E 1.

* '-O~l - 0.0 - .

".;:o , .o4 o.6 0.6 1.0 1.2 1.4 1.1 1.8 01o

- Fig 16.9

1. The Flow Line Spectrum for a Flame Tube-type Combustion Flow Field 2. Ignition

Flame 3. The Amount of + Roll Up

(2) A comparison between experimentation and calculations concerning the

combustion of round tube combustion chamber rotational jets. Natural gases are
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supplied from a jet nozzle in the center of one end of a round tube combustion

chamber with an internal diameter of 200 (mm) (the most important of these is

methane or methyl hydride). Around the jet nozzle, there-is the presence of an

axial gas supply G0 and a tangential gas input volume G, ; this situation forms

a rotational jet. It is possible to adjust (Ga/G) so that it will be equal to S'

and represent the vortical strength number. We did experimental measurements of

the gas temperatures T (K) along the axis of symmetry (Fig 16.10). Besides this,

on the basis of the set of average time quasi-stable state differential equations

set out in previous sections for axisymmetric combustion flow fields and on the

basis of the associated difference equations, we figured out a comparison between

the calculated distribution of gas temperatures along the axis line and the

experimental values obtained for this distribution. It can be seen that, if one

raises the tangential and axial gas supply ratio, S', (as well as the vortical

strength number, S), then, it is possible to shorten the flame and raise the

temperature of combustion. Combustion efficiency and stability are also raised

along with S'.

1f

700 . , *.gI

6...W 40 AI i 7 " 90(a,)

Fig 16.10

1. A Comparison of the Influence of Vortices on the Temperature Distribution

Along the Axis of Symmetry 2. Calculation 3. Experimentation 4. Vortical

Strength Number
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